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ABSTRACT

This dissertation introduces a novel three-dimensional pseudo-rigid-body model (3-D PRBM) for
straight cantilever beams with rectangular cross sections. The model is capable of capturing the behavior
of the neutral axis of a beam loaded with an arbitrary force end-load. Numerical integration of a system of
differential equations yields approximate displacement and orientation of the beam’s neutral axis at the
free end, and curvatures of the neutral axis at the fixed end. This data was used to develop the 3-D PRBM
which consists of two torsional springs connecting two rigid links for a total of 2 degrees of freedom
(DOF). The 3-D PRBM parameters that are comparable with existing 2-D model parameters are
characteristic radius factor (mean: y = 0.8322), bending stiffness coefficient (mean: Ko = 2.5167) and
parametric angle coefficient (mean: ce = 1.2501). New parameters are introduced in the model in order to
capture the spatial behavior of the deflected beam, including two parametric angle coefficients (means: ¢y
= 1.0714; ¢, = 1.0087). The model is verified in a few locations using ANSYS™ and its use in the design
of compliant mechanisms is illustrated through spatial compliant versions of crank slider and double

slider mechanisms.
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CHAPTER 1: INTRODUCTION

1.1 Objective

The objective of this dissertation is to present the first three-dimensional pseudo-rigid-body
model (3-D PRBM) for straight cantilever beams with rectangular cross section. The model is capable of

capturing the behavior of the neutral axis of a beam loaded with an arbitrary force end-load.

1.2 Motivation

The motivation for this work is to simplify the design of spatial compliant mechanisms, and to
provide a means of checking whether planar compliant mechanisms will buckle out-of-plane. Previous
PRBM have proved to be effective design tools for planar compliant mechanisms and have resulted in a
large number of useful/interesting mechanisms. It is anticipated that the model developed in this

dissertation will be useful in mechanisms design.

1.3 Scope

The scope of this work is to describe the method used to develop the 3-D PRBM and introduce all
its parameters. Additionally, its use is illustrated in spatial compliant versions of crank slider and double

slider mechanismes.

1.4 Overview

Chapter 2 introduces background information on planar compliant mechanisms and PRBM’s. The
governing equations that capture the behavior of the cantilever beams are presented in Chapter 3. The 3-D
PRBM and its parameters are described in Chapter 4. The PRBM equations are derived using virtual

work. Chapter 5 presents the governing equations in non-dimensional form. Typical parameters values are

1
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summarized for different aspect ratios in Chapter 6. These results will assist engineers in making quick
approximations of the deflections of three-dimensional cantilever beams. Two examples are presented in
Chapter 7 to demonstrate the usefulness of the model. The conclusions and contributions of this

dissertation are explained in Chapter 8.
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CHAPTER 2: BACKGROUND

2.1 Compliant Mechanisms

A compliant mechanism transfers motion, force or energy as a result of the elastic deflection of
flexible members. Compliant mechanisms gain at least some of their mobility from the deflection of
flexible members rather than from movable joints only [1]. Compliant mechanisms can be categorized by
the presence of kinematic pairs as either fully compliant or partially compliant mechanisms. Fully
compliant mechanisms do not have kinematic pairs. In fact, they transfer the energy from input to output
only through the deflection of flexible members. On the other hand, partially compliant mechanisms may

have one or more joints, including pins and sliders.

Compliant mechanisms offer advantages to the designers in two main categories: reduced cost
(part-count reduction, reduced assembly time, simplified manufacturing processes) and increased
performance (increased precision, increased reliability, reduced wear, reduced weight, reduced

maintenance) [1].

Compliant mechanisms advantages offer solutions to Micro-Electro-Mechanical Systems
(MEMYS) fabrication and assembly challenges. Numerous difficulties arise from MEMS design and part
assembly of mechanical and electrical components on the micrometer scale. First, the performance of
hinges and pin joints in the micro-scale do not exactly resemble their counterparts at the macro-scale.
Second, due to the planar nature of the MEMS fabrication, it can be challenging to produce spatial or

three dimensional motion mechanisms.

Compliant mechanisms also present several challenges and disadvantages in some applications.

One limitation of compliant mechanisms is the storage of energy in the flexible segments [2]. Inside the

3
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elastic range of the material, flexible segments build up potential energy in the form of strain energy when
they experience deflection. For some applications, this behavior is undesirable because all the energy
provided at the input is not transferred to the output. Another disadvantage in compliant mechanisms is
the fact that compliant links that remain under stress for long periods of time or at high temperatures may
experience stress relaxation or creep [1]. Finally, the largest challenge is to predict with sufficient

accuracy the behavior of compliant mechanisms.
2.2 Large Deflections

Geometric nonlinearities are introduced in the analysis of compliant mechanisms when compliant
flexures experience large deflections. “The major difference between large- and small-deflection analysis

lies in the assumptions made to solve the Bernoulli-Euler equation’” [1], The Bernoulli Euler equation is:

do
M =El— 1)
ds

where M is the moment, Z—z the rate of change in angular deflection along the beam (curvature), E the

Young’s modulus of the material, and | the beam moment of inertia. The curvature can be expressed as

d2
o gr o
ds 2 3/2
dy
[1 + (ﬁ) ]

where y is the transverse deflection and x is the coordinate along the undeflected beam axis. Equation (2)

can be written as

do d?y
P ©
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“For small deflections, it is assumed that C =1. As the deflection increases, C changes, and its deviation

from unity represents the factor by which the small deflection theory assumption is inaccurate.”

Table 1 Slope, beam angle and C. Adapted from [1]

dy 7} c
dx

0.01 0.6 0.9999
0.05 2.9 0.9963
0.10 5.7 0.9852
0.25 14.0 0.9131
0.50 26.6 0.7155
1.00 45.0 0.3536
2.00 63.4 0.0894

Compliant mechanisms undergo large non-linear deflections for which standard small-deflection
theory is inadequate. Thus, the mathematical approach for the analysis of planar compliant mechanisms
is based on elliptical integrals or Finite Element Analysis (FEA). FEA can predict the behavior of the
flexible segments when they are subjected to force or displacement loadings. However, these methods can
be time consuming and require large computational power for the early design stage of compliant

mechanisms.

2.3 Planar Pseudo-Rigid-Body Concept

Alternatively, a popular, easier and more intuitive technique called Pseudo-Rigid-Body Model
(PRBM) is used to analyze compliant links. PRBM is a parametric approximation in which the flexural
link is modeled as two rigid links joined by a torsional spring. The stiffness coefficient of the spring is
determined by the material properties and geometry of the compliant segment. The location of the joint is

determined by the characteristic radius factor y. The torsional spring imitates the stiffness of the flexible
5
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member in compliant mechanisms [3]. Currently there exist humerous PRBMs for different flexural
segments including small-length flexural pivots (living hinges), cantilever beams with force at free end,
fixed guided beams, end-moment loaded cantilevers, initially curved cantilevers and pinned-pinned
segments proposed by Midha, Howell, Saxena and Dado [4-9]. These PRBMs have helped the analysis
and synthesis of compliant mechanisms in different applications including pantographs [10], centrifugal
clutches [11-12], MEMS devices [13-16]. It is important to mention that these PRBMs are planar, and are

constrained to the plane of deflection of the compliant segments.

The focus of attention of this work is a cantilever beam of rectangular cross section with an
arbitrary force at the free end which can produce three dimensional motion. This compliant segment
requires a novel 3-D PRBM to describe the path of the deflected beam while maintaining the force-
deflection characteristics of the cantilever beam. Since this dissertation presents the first 3-D PRBM for
cantilever beams with rectangular cross section, there is no theoretical background for 3-D PRBM. The
following section will review the most relevant knowledge and concepts associated with planar cantilever
beams with force at the free end. These planar concepts will be explained in detail to ensure the

understanding of the reader when this dissertation builds the bridge from 2-D to 3-D motion.

2.4 Planar Cantilever Beam with a Force at the Free End (Fixed-Pinned)

A flexible cantilever beam with constant cross section and linear material properties is shown in
Figure 1. Its” PRBM equivalent is shown in Figure 2 which “shows a pseudo-rigid-body model of a large-
deflection beam for which is assumed that the nearly circular path can be accurately modeled by two rigid
links that are joined at a pivot along the beam. A torsional spring at the pivot represents the beam’s
resistance to deflection. The location of this pseudo-rigid-body characteristic pivot is measured from the
beam’s end as a fraction of the beam’s length, where the fractional distance is yl and v is the characteristic
radius factor. The product yl, the characteristic radius, is the radius of the circular deflection path

traversed by the end of the pseudo-rigid-body link. It is also the length of the pseudo-rigid-body link. The
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pseudo-rigid-body angle, @, is the angle between the pseudo-rigid-body link and its undeflected position.”
In addition, the horizontal (x-coordinate) and vertical (y-coordinate) coordinates of the end of the
deflected beam are represented by a and b, respectively.

Path followed by  ~
beam end

=
\X\
~N

— a A

Figure 1 Cantilevered segment with forces at the free end. Adapted from [1]

b
I RO

Pseudo-rigid-body
y A link .

Pseudo-rigid-body

Torsional spring angle

b
®
»l |
--------------- —
=
Characteristic Characteristic
pivot radius

Figure 2 Howell's PRBM of a cantilever beam (fixed-pinned). Adapted from [1]
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The kinematics of the pseudo-rigid-body model is described by equations (4)-(7).

%=1—y(1—cos®) (4)
? =ysin® (%)

B b
© =tan~?! (m) (6)

B+ (-3) ,

The relationship between the angular deflection of the beam’s end, 6, and the pseudo-rigid-body

angle, O, is nearly linear as expressed in equation (8)

90 = CQG) (8)

where ¢y is a constant called parametric angle coefficient.

2.5 Follower and Non-Follower Forces

A Kkey concept that needs to be emphasized before the explanation of the calculation of Howell’s
PRBM parameters, is the difference between follower and nonfollower forces. The angles, § and 6 which
describe force and free end orientations are defined using equations (9)-(12). Subscripts o, and | represent

the free end, and the fixed end respectively.

X, * F = et% €)

X * F = ei‘sl (10)

xl * x_o — eigal (11)
8

www.manaraa.com



8, =6, +6, (12)

where x, and F are complex conjugates of the positive x-axis of the free end and force direction
respectively. In equations (9)-(11), the first term is the tip of the vector, and the second term is the tail of

the vector measuring the angle.

In nonfollower forces, the angle of inclination of the force with respect to the positive x-axis of
the fixed end, §;, remains constant during the beam deflection. However, the angle of inclination of the
force with respect to the deformed neutral axis of the beam tip, §,, and the bending angle, 6,;, change
throughout the deflection path. In other words, the force components are constant in the fixed end

coordinate system. Figure 3 illustrates the concept, where §; = §, + 6, is constant.

6,= 98,40,

(o]
FY< N0,
!
\\ 6()
V- Oor
|

Undeflected position

[ )

Figure 3 Nonfollower force

On the other hand, in follower forces the angle of inclination of the force with respect to the
positive x-axis of the fixed end, §;, changes during the beam deflection. However, the angle of inclination

of the force with respect to the deformed neutral axis of the beam, §,, remains constant throughout the
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deflection. In other words, the force components are constant in the free end coordinate system. The

concept is illustrated in Figure 4.

Undeflected position

b4

/ >

Figure 4 Follower force

2.6 PRBMs for Planar Cantilever Beams with a Force at the Free End (Fixed-Pinned)

Howell uses optimization routine to find the values of the characteristic radius factor for planar
loading at different nonfollower force angles, ¢, which is equal to & in the opposite direction. The

optimization problem was stated as follows, “Find the value of the characteristic radius factor, y, which

maximizes the pseudo-rigid-body angle, ®, where © =tan‘1( ) which is subject to the

a-1(1-y)

parametric constraint:

g(@) =

error _ (error
< ( ) for0 <0 < Opax (13)

Ge Ge

max

10
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2

error \/{(%) —[1 -y —cos @)]}2 + [(?) — ysin G)]

. Ja-gy @y

(14)

error
Se

where is the relative deflection error, and a and b the respective horizontal and vertical coordinates

of the deflected beam end, which are calculated using elliptic integral approach”.

Howell [4] optimized the characteristic radius factor such that the maximum percent error in
deflection was 0.5% and allowed the maximum range for the pseudo-rigid-body angle. The optimal value

found for y is 0.8517 which yields a maximum @ of 64.3° for a nonfollower vertical force.

The bending stiffness of the compliant beam is modeled using a torsional spring with constant
spring-rate, K, placed at the characteristic pivot as illustrated in Figure 2. The value of the spring constant
is determined using geometric and material properties of the beam, and the non-dimensional stiffness
coefficient, Kg, using equation (16). The stiffness coefficient can be calculated using a non-dimensional
expression for the force orthogonal to the pseudo-rigid-link, F, as follows

_F?

— 15
® " ElI0 (13)

However, Howell approximated the value of Ky to 2.65 for the range of 63°< ¢<135°. The

equation for the torsion spring constant is:

El
K =vKo— (16)

For the PRBM shown in Figure 2, the torque, T, at the pin joint is proportional to the torsional
spring constant, K, times the PRBM angle, &:

11
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T = K© 17)

This torque can also be calculated as the product of the tangential force, F;, and the length of the

pseudo-rigid link

Combining equations (16), (17) and (18) an expression for the force required to deflect the

compliant member up to 6.

EIKo®
t= l—z

(19)

In addition to Howell’s planar PRBM for cantilever beam using one torsional spring (1R), other
researchers have developed models with increased numbers of torsional springs, (2R-3R) to increase the
range of accuracy of the model. Figure 5 illustrate two examples of PRBMs with multiple torsional

springs.

Yue-Qing [17] proposed a PRBM with three rigid links joined by two torsional springs for the
cantilever beam with force at the free end. Similarly to Howell’s approach, an optimization routine is

carried to obtain values for y maximizing ® while maintaining the error of the angle deflection below 1%.

The addition of the second pivot and torsional spring increased the maximum PRBM angle, O,
from 64.3° (Howell) up to 89.9° for the cantilever loaded with a vertical force, ¢=90°.Furthermore, Su
[18] proposed a PRBM with four rigid links joined by three pins and three torsional springs for the
cantilever beam with combined end force and moment. A specific search routine finds the optimal set of

characteristic radius factors and spring stiffness for the different torsional springs.

12
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Figure 5 Pseudo-rigid-body models with multiple torsional springs. Source [17][18]

The inclusion of additional degrees of freedom (DOF) permits a reduction in the approximation
error when compared with the conventional PRBM from Howell. Although PRBMs with multiple joints
and torsional springs can outperform the PRBM proposed by Howell, the 1R PRBM is less complex and

more user friendly.

Planar PRBM’s used in various applications were reviewed to determine the state of the art in the
compliant mechanisms area including human implants [19-20], bistable mechanisms [21-22], high

precision devices [23], multiple degrees of freedom [24-25], and conceptual guidelines [26-29].

Lusk [30] quantified the uncertainty for planar PRBMs by solving the elastic beam equations as a

function of arc length, s, along the beam’s neutral axis. The system of differential equation is:

de F

e Esin(&) (20)

% o (21)

X = cos(s, ~ 8) (22)

Z—}Sl = sin(§, — 9) (23)
13
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where k is the curvature of the deformed beam, &, is the angle that the neutral axis of the beam makes
with applied force, and § is the angle the applied force makes with the x-axis at a beam length equal to s.
The horizontal and vertical coordinates of the neutral axis are represented by x and y. Solving the
equations in non-dimensional form includes a broader range of materials, cross sections and force
combinations that represent infinite loading conditions. The characteristic length scale used to non-

dimensionalize the equations was,

EI
1= [— (24)
IFl

where||F|| is the force magnitude, and El, the flexural rigidity of the beam, is the product of Young’s
modulus, E, and the second moment of inertia in the bending axis, 1. Equations (20)-(21) are non-

dimensionalized using characteristic length scale resulting in the following set of equations:

i
i sin(8,) (25)
ay
% =K (26)
d% 27)

I cos(6, — )
dy _ . (28)
I sin(d, — &)

where the tilde accent indicates the variable is in non-dimensional form, e.g. K = xA and § = S/}\. In

addition, when the beam is loaded with a force and no moment at the free end, the associated boundary
condition is the nonexistence of curvature at the free end, i.e. & = 0. The solution is presented in Figure 6
which shows the phase portrait of the non-dimensional form of the elastica. The trajectories of the non-

14
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dimensional curvature, &, versus, 8, the angle the applied force makes with the x-axis at any beam length

§ are symmetric about K = 0 and § = —180°.

Lusk stated “when obtaining solutions for all the cantilever beams with a force and no moment on
the free end, it is more convenient to solve the differential equations in a frame of reference attached to

the free end of the beam [30]".

R
NN \\ \\\\\ N
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SN \\\\\ AN \\‘
\ N \\\
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R W\ Sy
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\ AR \ NS

\
\
|
|
I/

J

)

05—

80

force anglé‘(é(é) =G0+ 0o(3))

Figure 6 Phase portrait of the planar elastica. Adapted from [30]

Using this approach, the boundary condition related to the force angle, &, is invariant of the
frame of reference attached to the fixed end. Figure 7, a detail of the phase-portrait, shows free end’s
reference frames represented by ellipses, and fixed end’s reference frames represented by rectangles.
Furthermore, a single red dotted trajectory represents a set cantilever beams with follower force whereas
the blue dotted line represents a set of cantilever beams with non-follower force. When solutions are
obtained using the fixed end frame, force increments require multiple numerically integrated trajectories

because boundary conditions on the free end are changed. On the contrary, if solutions are obtained using

15
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the free end frame, force increments only require additional integration steps along a unique trajectory

because boundary conditions on the free end are constant.

The result obtained from the planar beam system of differential equations include exact values for
curvature at the fixed end, x- and y-coordinates of the beam tip with respect to the fixed end of the beam
and beam bending angle, 6. These results are presented in Figure 7-Figure 9. Furthermore, equation (7)
is used to find the exact value of the characteristic radius factor, y, and are presented in Figure 10.
Relative error is calculated if the generic characteristic radius value of 0.85 was used in equations (4) and
(5) compared to the exact values of a and b found on the solution and illustrated in Figure 11. These

results are presented in phase portrait and contour plots using angle §(s) as the abscissa.

16
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Figure 8 The x- coordinate of the beam tip. Adapted from [30].
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Figure 10 Exact values of characteristic radius factor using values of a and b. Adapted from [30].
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Figure 11 Relative error incurred from using y value of 0.85 in PRBM equations. Adapted from [30].
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CHAPTER 3: NUMERICAL INTEGRATION

This section presents the governing equations for cantilever beams with arbitrary force and no

moment at the free end, and the coordinate reference frames used in the process.

The governing equations that describe large, nonlinear deflections exhibited by cantilever beams
in compliant mechanisms were described by Frisch-Fay [31] and adapted by Ramirez et al [32] using a
system of nonlinear differential equations. However, in this dissertation the orientation of the reference
frame attached at the beam free-end is rotated by x radians in the local z-axis resulting in a sign change in
the force directions terms. The frame of reference at the beam’s free end is used to solve the system of
differential equations for all the cantilever beams with an arbitrary force and no moment on the free-end.
Chapter 2 discussed the advantages of solving the system of differential equations in the free end

reference frame using follower forces.
3.1 Governing Equations

Equations (32)-(40) define the system of differential equations used to obtain the Euler angles set
(W, 6 and ¢), curvatures (ty, k, and x,) and the coordinates (X, y, and z) of the initially straight cantilever
beam loaded with an arbitrary follower force and no moment at the free end. An Euler angle set rotation,
%szx(qj, 0, ¢), was used to describe the rotation from the reference free end frame, {H}, to the relative

frame of the fixed end, {A}, of a beam loaded with a follower force and no moment at the free end.
Reference frame {A} changes at each integration step along a neutral axis trajectory of a beam loaded
with a non-follower force. Figure 12 and Figure 13 show the location and orientation of the frames at the

beam ends with respect to the free end and fixed end respectively.
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Figure 13 Deflected beam with frame {A} as reference

The angles of inclination of follower forces with respect to the deformed free end neutral axis of
the beam remain constant during deflection (i.e. HE s constant). The components of the spatial follower

force in the {H} frame can be obtained using the following expressions:

{H}Fx = ||F||sinn cos & (29)

{H}Fy = ||F||sinnsiné& (30)

UE, = |IF|| cosn (31)
23
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where n and & are angles of a spherical coordinate system that define the orientation of the follower force
with respect of frame {H} as shown in Figure 14. Due to symmetry of the beam this dissertation only
focuses on the subspace where n = [90°- 180°] and & = [0°- 180°], which is one quarter of the sphere of
possible force directions, and reflect the fact that a rectangle has 2 axes of symmetry (4 symmetric

regions).

Figure 14 Force direction described with spherical coordinates

The governing equations are:

{H}
do cos 6 . cos@
ds P+ {A}Ky cos ¢ sinf Wi, sing sin@ (32
Hqg
_ 4 : {A}
Frie Ky sing + "k, cos ¢ (33)
{H}d_w _ cos ¢ L@ sing (34)
ds Y sin@ “sin@
War 1
X (43 @y, @4, @
= ((E Ly = E¥1,) Wi, xz) (35)
G Ly
Ak 1
A A A} {a A
T ((E{ = 61 ) W, Wi, 41 }Fz) (36)
E*L,,
24
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Wa 1
A A A} {A A
—Z= ((G{ }Ixx — E{ }Iyy){ }Tx{ }Ky . }FS,) (37)

ds g,
{H}d_x = cos 0 (38)
ds
{H}z—)s] = cosysinb (39)
{H}% = siny sinf (40)

(ay

where ““l,y, {A}Iyy and {A}IZZ are the second moments of area with respect to the x-, y- and z-axis in the

{A} frame. The ODE45 function in Matlab numerically integrates the system of differential equations
from s = 0, at the free end, to s = —[, at fixed end, in frame {H}. Numerical integration of the system
solves for Euler angles, the position coordinates expressed in the coordinate system {H}, and curvatures
expressed in the coordinate system {A}. In order to express force and position coordinates in the {A}
frame, they must be pre-multiplied by a rotation matrix using negative of the Euler angle set in the reverse

order.

WF = B Ryzx (=, —6,—p)"F (41)
U8 = — Ry zx (—, -6, —) "X (42)

Equations (32)-(34) are found from the differential relationship between the Euler angles and the
curvatures. If a different Euler angle set is selected, the relationship would be different. Equations (35)-
(37) are derived from the 3-D versions of the Bernoulli-Euler equations, M =EIk, by taking its
derivative with respect to the arc-length s. Equations (38)-(40) describe the {H} frame components of
“4lg

unit vector for a particular integration step, in other words they give the direction of the neutral axis

as it lengths away from the free-end.
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CHAPTER 4: THREE DIMENSIONAL PSEUDO-RIGID-BODY MODEL

This chapter describes a novel PRBM derived from the solutions of the spatial large deflection
equations, which is the first PRBM that approximates the behavior of an initially straight cantilever beam
with rectangular cross section loaded with an arbitrary force and no moment. This PRBM is able to
predict the position and orientation of the neutral axis of the beam in addition to the moments at the fixed

end.

Figure 15 General 3-D PRBM.
26
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A general 3-D PRBM consists of two rigid links and a thin end cap. The first rigid link is fixed to
ground in one end and connects to the second rigid link with the spherical joint 1. The second rigid link
connects to a thin (L=0) end cap with the spherical joint 2. The end cap is a plane whose orientation is
identical to the orientation of the free end of the compliant beam. Figure 15 illustrates the concept

described above.

4.1 Position Equations

Numerical integration provides the position coordinates of the neutral axis of the beam from the
fixed end with respect to the free-end of the beam. However, designers are used to express the position
coordinates of the deflected beam using the frame at the fixed end. Thus, Equation (42) was used to map
position coordinates from {H} to {A}.The position coordinates of the neutral axis at the free-end (a, b

and c), in the {A} frame, are given by:

a=1—yl(1—cos0) (43)
b =ylsin® cos® (44)
c=ylsin®sin® (45)

where [ is the beam length, y is the characteristic radius factor, @ is the bending pseudo-rigid-body angle,
and @ is the twisting pseudo-rigid-body angle. Angle @ is the rotation angle of the first rigid link with

respect of the x-axis in frame {A}.
4.2 Angle Equations

Because a, b and ¢ can be found from numerical integration of equations (32)-(40), parameters of

the model, y, ®and & , can be obtained for every loading condition analytically solving equations (43)-
(45): {{giR = Ry, (P, 0) is a rotation from the {A} frame to the {D} frame at the characteristic pivot

which take place in the spherical joint 1, depicted in Figure 16.
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@ = tan”(3) (46)
y=<%>2+<%(>2 ()) )

2(1_¢

:
0 = tan™! (%l_“’% (48)

b
(Al (Ciz
0

Figure 16 Spherical joint 1

The orientation of the free end of the beam expressed in the {A} frame is determined by the
rotation matrix {{giRXZX(—dx —60,—1). In order to ensure that the end cap orientation will always be

identical to the beam’s free end orientation, the second spherical joint is allowed to perform a XZX

rotation, Ry,x(Z, Q, ¥). Since rotation matrices are orthogonal, their inverse is equal to the transpose (e.g.

R™1 = RT). Thus,
{{I?%RXZX(_QBI —0,-y) = %ﬁ%R * Ryzx (%, Q,¥) (49)
EZ%RXZX(Z’ O,%) = RZ_l(G)RX_l(CD) {{S%RXZX(_qhv —6,—y) (50)
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R 2x (5,0, %) = RyT(O)RyT (@) i Ryzx (— b, —6, —) (51)

Equations (49)-(51) is a 3x3 system of equations that is solved as follows.

2
1\/(§Z§RXZX(2:1))Z + (GZ%RXZX(&D)) (52)

0 =tan~
(Rxzx(1LD))

Rxzx (3,1)

S =tanl—sSnl (53)

(mRxzx(2,1)

sin{]
Rxzx(1,3)
Y =tant— S (54)

—{mRxzx (2,1)

sin ()

We can now establish a relationship between 3-D PRBM angles &, @ and ¥ and Euler angles

Y, 0 and ¢.
¢ = cy® (55)
0 =cg0 (56)
Y =cy¥ (57)

where cg, cg and cy, are called parametric angle coefficients. The previously defined coordinate rotations

(%, Q, W) take place in the second spherical joint illustrated in Figure 17.
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Figure 17 Spherical joint 2.

4.3 Virtual Work

The stiffness of the beam was calculated using the method of virtual work. The general 3-D
PRBM has two torsional springs associated with angles Y and @. In addition, the twisting pseudo-rigid-

body angle, @, includes two distinct physical effects as illustrated in Figure 18.

Figure 18 Spherical joint 1 with twisting and orientation angles

One effect is the twisting of the first rigid link in the model whereas the other effect describes the
orientation of the bending direction relative to the beam’s principal axes. Thus the angle relationship can
be defined as,
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=Y +T (58)

or more precisely,

(R (@) = (R () % [GRx (1) (59)

where Y is the angle of twist of the first rigid link, and I" is the orientation of the bending direction

relative to the principal moments of area of the beam.

The stiffness of the beam under force loading is calculated from the potential energy of the two
torsional springs, ¥ and @, located at the first spherical joint. The torsional potential energy of the first
rigid segment is given by:

1 9.6

= —x 60
AT 0

Vr

which is the classic torsion potential energy for a beam of length (1 — y)L. Similarly,

{3
I,,E
Vg = %* ZZ yKQQZ (61)

where Vj is similar to Howell’s expression for bending potential energy of a 2-D compliant beam, with

the distinction that {C}IZZ is expressed in the {C} frame. This distinction is crucial because it correctly

captures the bending stiffness about a non-principal stiffness axes. Because Y represents a physical

twisting of the beam’s cross-section, 1, = ¥, and ¥, = ®1,,, (i.e. {B} frame is a principal
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stiffness frame). Thus using the transformation rule for 2-D second order tensors (Mohr’s circle) and

coordinate rotation angle I", we state that

I
2
B, _®
fp= = ez (63)
R 2
Oy, =T — I cos(2I) (64)

¢ )

It is important to mention that I and I are invariant under rotations about *’’x, so they can be

used in {A}, {B} and {C} frames. The virtual work equations are given by

zf 5X, 6V6 0 (65)
" L S 0qg = 65
= 0qy

where X = X(qy) and qx = (¥, T, ©). The position of the free end is defined by,

X =La-pWz+yLP2 (66)

because M7 is constant, and Dlrisa rotating vector, dX becomes:

dX =y (do'%% + d6™2) x 'z (67)
[ ] cos® sin® 0 D] [ Pxcoso+ Plysine |
{C}y = [—sin ©® cos® 0] {D}y = | -Phsine + {D}y cos
{, 0 0 1 0}, ®3,
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D
o}, vy, o, [ 0% ]
. _ D
dX =yL|ap cos® dosine do|=vL| doPy ‘
1 0 0 do sin® Pz
dX = yL ((dY +dI) sino Pz + d@“’}y) (68)

x:(a, b, c)

¥#| Wix {Cly

~<~—(1-7)L —

Figure 19 Beam tip position

To facilitate the dot product in equation (65) we express the force in the {D} frame using the

following rotation:

PIF = R,T(@)Ry (@) WF (69)

The first term of equation (65) becomes:

F-dX = yLdo™™'E, + yL(dY + dr) sin@ "’F, (70)
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Partial differentiation with respect to Y, I" and, © of equations (60) and (61) yield

{c}
dVy LG
U ey o T 71
= ao (71)
dVg E
_ — VKa— i 72
o O = —vKo 7 0% sin(2T") 8T (72)
dv, E _
—d—(;d@ = —vK, Z(I — Ir cos(2I))0 60 (73)

Substitution of equations (71)-(73) into (65) yield,

{D} {C}IxxG
sY: | yLPE sine - —22_v | =0 (74)
(V g A-pl )
Dig o E o o2
OT: (yLYF, sin® — yKg ZIRG sin(2I) | =0 (75)
{D} E —
60:(yL™'F, — YKQZ(I —Izcos(2I))0) =0 (76)

4.4 Moment Equations

Figure 20 shows the moments at the characteristic pivot due to F with no moment applied at the

end of the beam.

(DIF,

DiE,

{D}F,

FE
(1-yL

Figure 20 Moments at characteristic pivot
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Moments are expressed in the {C} frame using the following equations:

Oy, = yLE, sin6 (77)
{C}My = —yL{D }FZ cos O = —{C}Mx cot® (78)
{C}MZ — ]/L{D}Fy (79)

Replacing equations (77) and (79) into (74) and (76) yields,

{C} {C}IxxG ( )
X 80
YA
© E - 8
M, =yKo7 (I = Iz cos(2))0 (81)

This moment can be also expressed in the {A} frame attached to the fixed end with the following

expression:

Wi = DRy (@) M + (1 —y)L, x WF (82)

The moments in frame {A} using 3-D PRBM parameters, can be compared with results from

FEA or numerical integration. The moments in frame {A} from numerical integration can be expressed as

follows,

{A}Mx — {A}Ixx G {A}Tx (83)

A A A

{ }My — { }Iny{ }Ky (84)

{A}MZ — {A}IZZE{A}KZ (85)
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4.5 Validation for Planar Loading (2-D) and Axisymmetric Beam

The following section demonstrates that the proposed 3-D PRBM is also valid for xz and xy

planar loading, and axisymmetric beams. Since virtual work equations require expression for o }FZ, the

force component in the z-axis is calculated using equation (69).

{D}FZ = {A}FZ cos P — {A}Fysin 0

For the xz planar case, {A}Fy =0and b =0,

with {A}Fy = 0 and cos(®) = 0 equation (86) reduces to

P, =0
z

Replacing P }FZ into equation (74), we obtain

sl Y =0
1-vL
. ) O
it is required that # 0, thus
(1-y)L
Y=0
36
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substitution on equation (58) yields,

®=Y+T
T
= +—
r=+ > (91)
Equation (76) simplifies to:
3 Ew o)=o0 (92)
YL*™F, _YKGZ 1,0 ) =

which is similar to standard planar PRBMs. The previous results show that the beam will not experience

twist and twisting pseudo-rigid-body angle, @, will be +90°depending on the sign of {A}FZ.

Using a similar approach, the xy planar case, {A}FZ =0and c = 0, is presented:

& =tan™?! (%) =tan™?! (%) =0 (93)

with {A}Fz = 0 and sin(®) = 0 equation (86) reduces to

Pip =0 (94)

Replacing P }Fz into equation (74), we obtain

{c}
I—x"GY =0 (95)
(1-y)L
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D6

1
oL # 0, thus

it is required that

Y=0 (96)
substitution on equation (58) yields,
d=Y+T
r=o0 (97)
Again, equation (76) simplifies to:
o) Ew
YL, — yK@z 1,,0)=0 (98)

which is similar to standard planar PRBMs. The previous results show that the beam will not experience

twist. In addition, the angles @ and I" will vanish which is the case in a planar PRBM.

For the axisymmetric beam case where {C}Iyy = {C}IZZ, thus equation (63) yields I = 0. Partial

differentiation with respect to T of equation (61) yields

avy E_
_Bsr = _yK. — - 99
== o6 = —yK, LIRO sin(2I') 6T (99)

substitution of equations (99) into (65)

E
ST ()/L{D}FZ Sin® — yKo 7 1507 sin(zr)) =0 (100)
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substitution of I = 0 in equation (100) gives,

yLPE sine =0 (101)
it is required that yL sin ©® # 0, thus
Dip =0 (102)
Equation (74) reduces to
{c3
I—xxGy =0 (103)
L
. . O
it is required that —=— = 0, thus
Y=0 (104)
substitution on equation (58) yields,
=Y+T
&=r (105)
substitution of I in equation (76) gives,
E -
(yL{D}Fy — K, Z{C}m) =0 (106)
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The previous results show that the beam will not experience twist. Results suggest that rotation

angles @ and I" will be equal to 90°- 7 (i.e. the bend axis is perpendicular to the force direction).

4.6 Validation Using Finite Element Analysis

Ansys, commercially available FEA software, was used to validate the results of the numerical
integration. In the following examples, the results from the numerical integration and Ansys are
presented. The beam is 1 m long, 0.02 m wide, 0.01m thick, and Young’s modulus is 200 GPa. In the first

case, the beam is loaded under the following force parameters.

e F=600N and n= 135°, &= 90°

FRINT I HODAL SOLUTION PER HODE
wxckeik POST] MODAL DEGREE OF FREEDOH LISTING serckobek

LOAD STEP= 1 SUBSTEP= 5
TIRE=  1.0000 LOAD CASE= O

THE FOLLOWING DEGREE OF FREEDOH RESILTS ARE IN THE GLOBAL COORDINATE SYSTEH
HODE Ih] LY Uz L5LH

1 0.0000 0.0000 0.0000 0.000d
2 -0.10940 0.39325%  -0.11839 0.42501

PRINT RERCTION SOLUTIONS PER HODE
#oebick POST1 TOTAL REACTION SOLUTION LISTING #ebdebe

LOAD STEP= 1 SUBSTEP= 5
TIRE=  1.0000 LOAD CASE= O

THE FOLLOWING ®,%,& SOLUTIONS ARE IN THE GLOBAL COORDIMATE SYSTEH

HIDOE F FY Fe H HY HZ
1 304.10 -304.74 417.92 128.27 -405.20 -390.9%3
TOTAL MALLES

YALUE  304.10 -304.4 417,92 128.27 -403. 20 -390, 53

Figure 21 Ansys output for cantilever loaded with F=600N
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Figure 22 Deformed and undeformed beam loaded with 600N

The results summary in Figure 21and the deformed beam in Figure 22 present the deflections and
reaction moments on the cantilever beam. The relative coordinate position of beam ends with respect of
the fixed end was calculated by Ansys for the deformed beam. The deflections are 0.8906 m, 0.39325 m,
and -0.11839 m for a, b and c respectively. The moment reactions at the fixed end of the beam in the x-,
y- and z-components were 128.27 Nm, -408.20Nm and -390.98 Nm respectively.

Command Window

F mag eta xi AR =

600 135 90 0.5
curvatures =
—-0.19094 0.30588 1.172
angles =
16.24 -36.602 -13.218
h zyz =
-0.95001 0.20391 —-0.049681
abc =
0.89503 0.38772 -0.11113
a F=
—-304.11 304.74 -417.91
K theta =
2.5277
a M PREM dim =
-128.17 407.84 300.66
mag a M PREM dim =
579.11
Jr s>

Figure 23 Matlab output for cantilever loaded with F=600N
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Results from the numerical integration are presented in Figure 23. The deflections are 0.8905 m,
0.38772 m, and -0.1111 m for a, b and c respectively The equivalent applied moments at the fixed end of

the beam in the x-, y- and z-components were 128.17 Nm, -407.84 Nm and 390.66 Nm respectively.
In the second case, the beam is loaded under the following force parameters:
e F=750N and n=120°, &= 60°

The results summary in Figure 24 and the deformed beam in Figure 25 present the deflections and
reaction moments on the cantilever beam. The relative coordinate position of beam ends with respect of
the fixed end was calculated by Ansys for the deformed beam. The deflections are 0.79176 m, 0.53751 m,
and -0.1162 m for a, b and c respectively. The moment reactions at the fixed end of the beam in the x-, y-

and z-components were 159.77 Nm, -362.87 Nm and —589.59 Nm respectively.

File:

FRINT U HODAL SOLUTION PER HODE
seiionk PST1 HODAL DEGREE (OF FREEDOH LISTING debeioick

LOAD STER= 1 GUBSTEP= 3
TIHE=  1.0000 LOAD CA3E= O

THE FOLLOWING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEH
HODE h) Iy Lz LSUH

1 0.0000 0.0000 0.0000 0.0000
2 -0.20824 0.53751  -0.11620 0.58803

m PRRSOL Command

File

|
FRINT REACTION SOLUTIOWS PER HODE
whrkk POSTI TOTAL REACTION SOLUTION LISTING detckeack

LOAD STEP= 1 SUBSTEP= 3
TIHE=  1.0000 LOAD CASE= O

THE FOLLOWIHG &,%,7 SOLUTIONS ARE IH THE GLOBAL COORDIMATE SYSTEM

HODE F Fy FE H¥ H HE
1 268.97 -561.08 415.40 159.7 -362.87 -589.59
TOTAL MALUES

YALUE  268.97 -5nl.08 413.80 159,71 -3, 47 -539.59

Figure 24 Ansys output for cantilever loaded with F= 750N
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ANSYS

Noncommercial use only

Figure 25 Deformed and undeformed beam loaded with 750N

Results from the numerical integration are presented in Figure 26. The deflections are 0.0.79651
m, 0.53471 m, and -0.10524 m for a, b and c respectively The equivalent applied moments at the fixed
end of the beam in the x-, y- and z-components were -164.86 Nm, 361.84 Nm and 590.73 Nm

respectively.

Command Window

F mag eta xi AR =

750 120 (1]
curvatures =
-0.25718 0.27138 1.7722
angles =
11.639 -51.123 -T7.6352
h Xyz =
-0.92417 0.27453 -0.041&82
abc =
0.79651 D.53471 -0.10524
B E S
-268.97 561.08 -418.74
K theta =
2.5672
a M PRBM dim =
-l164.86 361.84 5580.73
mag a M PREM dim =
712.08
fx o>

Figure 26 Matlab output for cantilever loaded with F=750N

43

www.manaraa.com



The previous results demonstrate the agreement between FEA and numerical integration in terms
of position of the free end and the Moments and force reactions at the fixed end of the beam. The small
relative error in some of the position coordinates is due to the inextensibility of the beam in the

differential equations whereas in FEA the effective length of the beam can change depending on the

loading conditions.
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CHAPTER 5: NON-DIMENSIONAL NUMERICAL INTEGRATION

This chapter presents a non-dimensionalized form of the governing equations presented in the

Chapter 3. Solving the equations in non-dimensional form includes a broader range of materials, cross

sectional aspect ratios and force combinations that represent infinite loading conditions in the same

integration trajectory.

5.1 Characteristic Length Scale

The system of differential equations was non-dimensionalized with a characteristic length scale,

A, similar to one used by Lusk given in Chapter 2 equation (24)[30].

N P
IFIIAR

(107)

where, E is Young’s modulus. ¥, is the second moment of area with respect the z-axis at the fixed end

of the beam. ||F|| is the force magnitude applied at the free-end, and AR is aspect ratio of the rectangular

cross-sectional area defined as width, w, divided by height, h. Figure 27 illustrates the orientation of the

cross sectional area with respect of the coordinate system {A}. Non-dimensional forms of the model

parameters are defined in Table 2.

A},

—

Figure 27 Rectangular cross section at fixed end
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Table 2 Non-dimensional form of parameters

Dimensional | Non-dimensional
example
Curvatures K,T K=kl
Length l,s,x,y,z §=5/;
Force F /
F=" ir

5.2 Nondimensional Governing Equations

Equations (32)-(34), (38)-(40) and (35)-(37) were multiplied by 4 and A respectively obtaining

the following system non-dimensional differential equations:

g cos ¢ cos 6 sin¢ cos 0
= e+ Wiy (=) - YR (e 108
ds Bt K”( sin 6 ) KZ( sin@ ) (108)
"do (109)
e W Ky sing + Wi, cos ¢
Bay  —Yi,cosp+ Wk, sing (110)
ds sin@
{A}@ _ 2(14+v)(1 - AR?) 5 {A}~ (111)
ds 1+ AR?
(4}~
dry —(4r? - w Wz Wi 4 ARWE (112)
ds 2(1+v)
Wdk, _ ((AR? —20 =D\ (a_ a, _ @y, 113)
&\ 20+warz ) * T AR
Waz (114)
FEa = cos 0
{H}ﬂ = cosysinb (115)
ds
Haz (116)
5 =siny sin@
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where v is Poisson’s ratio. The ODE45 command in Matlab was used to numerically integrate the system
of differential equations. These differential equations are solved with initial conditions of § = 0 at the
free-end of the cantilever beam, assuming no torques and no displacements or rotations in the fixed end
(Tx=K,=¢p=0=y=%=y=2=0). The numerical integration stops when a maximum in the bending

curvature is found. Equations (41) and (42) are used at every integration step to transform F and position

vector (%, ¥ and Z) from frame {H} to {A} respectively.

Table 3 shows the typical structure of the results from numerical integration of non-dimensional
form of equations. In order to navigate through results three inputs are required. These inputs are direction

of the non-follower force, n and &, aspect ratio (height/width), and the equivalent non-dimensional length

(e.g. § = %). To provide an example, imagine a small scale beam of 100 mm of length, 1 mm of

\] IFIAR

height, 5 mm of width, loaded at the free end with a force of 10.25 N with a follower force of angles

n and & of 120° and 65° respectively. The nondimensional parameter § is computed:

L 0.1m = 0.496
El N
\/llFIIAR 200 Gpa (0.005 ;20.001 )m4
0.001

[%])
Il

Results suggest that the beam will deflect 32% of its length in the positive y-axis, 9% in the
negative z-axis with respect of the {A} frame. Pseudo-rigid body angles ¥, 0 and & equal to 1.463°,

22.79°, and 1.54° respectively, and a characteristic radius factor of 0.834.
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Table 3 Typical results from numerical integration

120 0.1024 120.0 61.1 1.000 0.013 0.000 1.527 0.834 0.902 -0.003 0.226 -1.524 2.501 -1.524 0.000 0.999 1.250 1.000
120 60 0.2047 0.2 120.1 64.6 0.998 0.053 -0.001 1.526 0.834 3.632 -0.015 0.906 -1.518 2.503 -1.513 -0.005 0.992 1.249 1.002
120 60 0.3071 0.2 120.1 70.4 0.991 0.120 -0.003 1.524 0.835 8.247 -0.046 2.049 -1.518 2.507 -1.492 -0.026 0.976 1.248 1.006
120 60 0.4095 0.2 120.3 78.7 0.972 0.214 -0.006 1.525 0.835 14.827 -0.111 3.671 -1.538 2.514 -1.457 -0.081 0.942 1.248 1.015
120 60 0.5118 0.2 120.5 89.6 0.931 0.332 -0.009 1.529 0.835 23.442 -0.234 5.789 -1.602 2.528 -1.403 -0.199 0.876 1.247 1.030
120 60 0.6142 0.2 120.8 103.1 0.857 0.467 -0.014 1.539 0.834 34.102 -0.446 8.420 -1.738 2.548 -1.330 -0.407 0.759 1.247 1.056
120 60 0.7165 0.2 121.1 119.1 0.739 0.605 -0.021 1.557 0.832 46.695 -0.789 11.579 -1.981 2.579 -1.245 -0.736 0.566 1.248 1.094
120 60 0.8189 0.2 121.5 137.5 0.575 0.722 -0.030 1.586 0.827 60.924 -1.312 15.269 -2.376 2.621 -1.177 -1.199 0.255 1.251 1.150
120 60 0.9213 0.2 121.8 157.6 0.376 0.794 -0.041 1.626 0.819 76.266 -2.075 19.481 -2.973 2.672 -1.186 -1.787 1.000 1.255 1.234
120 60 1.0236 0.2 121.8 178.8 0.165 0.805 -0.054 1.674 0.807 91.992 -3.148 24.184 -3.836 2.726 -1.381 -2.455 1.000 1.262 1.374
120 65 0.0992 0.2 120.0 66.1 1.000 0.013 0.000 1.459 0.834 0.886 -0.002 0.222 -1.457 2.501 -1.457 0.000 0.999 1.250 1.000
120 65 0.1983 0.2 120.1 69.5 0.998 0.052 -0.001 1.458 0.834 3.561 -0.012 0.888 -1.453 2.502 -1.449 -0.005 0.993 1.249 1.002
120 65 0.2975 0.2 120.1 75.2 0.992 0.117 -0.003 1.458 0.834 8.068 -0.038 2.007 -1.455 2.506 -1.432 -0.024 0.979 1.249 1.005
120 65 0.3966 0.2 120.2 83.3 0.974 0.208 -0.005 1.459 0.835 14.466 -0.095 3.590 -1.478 2.512 -1.403 -0.075 0.948 1.248 1.013
120 65 0.4958 0.2 120.4 93.8 0.935 0.323 -0.009 1.463 0.834 22.793 -0.204 5.649 -1.540 2.524 -1.358 -0.182 0.887 1.248 1.027
120 65 0.5950 0.2 120.6 106.8 0.865 0.454 -0.013 1.474 0.833 33.031 -0.393 8.196 -1.668 2.542 -1.295 -0.373 0.779 1.248 1.051
120 65 0.6941 0.2 1209 122.1 0.756 0.587 -0.019 1.493 0.831 45.050 -0.699 11.238 -1.893 2.569 -1.220 -0.673 0.602 1.249 1.086
120 65 0.7933 0.2 121.2 139.6 0.605 0.704 -0.028 1.521 0.826 58.557 -1.162 14.773 -2.253 2.607 -1.154 -1.099 0.320 1.252 1.137
120 65 0.8924 0.2 121.5 158.7 0.420 0.782 -0.038 1.561 0.818 73.066 -1.834 18.784 -2.790 2.653 -1.145 -1.645 1.000 1.257 1.212
120 65 0.9916 0.2 121.5 178.7 0.222 0.805 -0.050 1.610 0.807 87.924 -2.769 23.236 -3.554 2.704 -1.276 -2.278 1.000 1.264 1.329,
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CHAPTER 6: RESULTS

6.1 Results from Numerical Integration

This chapter presents the results of the numerical integration of the non-dimensional governing
equations of the cantilever beam with rectangular cross section loaded with an arbitrary force and no
moment at the free end for different aspect ratio. The following figures are three dimensional with n and &
in the x and y axis respectively which represent all the possible load directions. In this dissertation, the
data set has stopping criteria of 70° as the maximum PRMB angle, ® which is the limit used in the planar
case by Howell [1]. Although more data was generated, the results presented are focused on this region,
because of its practicality and numerical stability. In fact, fits can be found in this region with good

fidelity.

In the next paragraphs, the plots and interpretation of the results for AR = 1 which is a square

cross section, and AR = 0.2, a thin wide cross section, will be presented.

Figure 28 and Figure 45 present the nondimensional length for both aspect ratios. The values of §
are higher at the region where the force direction is nearly parallel to the beam neutral axis. In fact, the
active force component will be smaller in this region compared to a perpendicular force, & = 90°,
therefore a larger force is required to produce identical bending moment. When comparing the results of
the equally sized squared and rectangular cross sections, it can be concluded from the plot that to produce
the same bending deflection the rectangular cross section requires a smaller §. This result is expected,
since the beam with the rectangular cross section is thinner. Maintaining all other parameter fixed, it

needs a smaller force or beam length compared to its squared counterpart to generate the same deflection.
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In Figure 45, it can be observed the stiffening effect when the force is oriented towards the smaller side of

the rectangular cross section, n approaching 180°, resulting in a larger nondimensional length.

Figure 29, Figure 30, and Figure 3lillustrate the relative displacement in the x-, y- and z-axis
respectively for AR = 1. Figure 46, Figure 47 and Figure 48 illustrate the relative displacement in the x-,
y- and z-axis respectively for AR = 0.2. As expected the relative deflection in the z-axis is significantly

smaller for the wide rectangular cross section beam.

For AR = 1, @ illustrated in Figure 32, the PRBM twisting angle is identical to the frame rotation
angle, T illustrated in Figure 39, because there is no twist of the cross section along the beam, Y shown in
Figure 38. In addition, the final rotation that takes place in the second spherical joint, ¥ illustrated in
Figure 37, is exactly opposite to ®. This is a characteristic intrinsic of axisymmetric beams. The first

rotation that takes place in the second spherical joint, X illustrated in Figure 36, is almost negligible.

On the other hand, for rectangular beam the twisting effect, Y shown in Figure 55, is always
present producing a difference between @ and T illustrated in Figure 49 and Figure 56 respectively. The
flat behavior at the top surface presented by this two parameters suggest that the beam will not experience
significant out of plane deflections until the force component in that direction is sufficiently large which
is controlled by ¢. In addition, the final rotation that takes place in the second spherical joint, W illustrated
in Figure 54, has an opposite behavior to @, but not entirely symmetrical. The values of £ shown in

Figure 53 still small and becomes appreciable when the force angle £ is small.

For both cross sections, the results for y, Kg and cy are quasi constant along the spectrum, and
more importantly are comparable to planar values for the same parameters. These results are shown in

Figure 33, Figure 40, Figure 41for AR =1 and in Figure 50, Figure 57, Figure 58 for AR = 0.2.

The PRBM bending angle, ® shown in Figure 34, has a nearly constant ratio of 0.25 with the

second rotation angle in the second spherical joint, Q illustrated in Figure 35. It can also be observed the
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previously mentioned stiffening effect when 7 approaches 180°. The other parametric angle coefficients,

cp, and cy, relate Euler angles to PRBM angles and are equal to unity for the square cross section.
Figure 59 and Figure 60 show the steady behavior of the parametric angle coefficients c4, and ¢y, for the

rectangular cross section
5.2 Fitting of Model Parameters

It is possible to use the method of least squares to produce a regression of the parameters that
have a nearly constant behavior in a particular range of interest. Regression for Ky,y,cg, ¢y and cy /o
were calculated as a function of , 8, § and AR. The coefficients for each parameter were calculated using

the least squares method as indicated in equation (117).

By = ([X(a, 8,5, AR [X(a, B, 5, AR)) X (e, B, 5, AR)]  YVyay (117)
Yorediction = X(a,pB,3, AR)E (118)

for Ky, v, cg, cy the X(a, B, §, AR) is given by:

X(a,B,5,AR) = [1 cosa cosf sina sinf8 ARS AR§? ARS cosa cosf3 §sinasinf §(1

+ cosfsina)] (119)
for cy ¢ the X(a, B,5,AR) is:
X(a,B,5,AR) = [1 cosa cosf sina sin8 ARS AR5? ARS cosa cosf8 Ssinasinf3
(120)

5(1 4+ cosfsina) sinf(cosa—1) —cosa |
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These X functions were chosen by a combination of studying the results profiles and trial and
error. The results for the coefficient vectors are shown in the Appendix B for different aspect ratios. In

addition, results of a statistical analysis of the constants parameters are also presented in the Appendix B.
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AR 1

Figure 31 c/s for AR 1
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AR 1

Figure 32 @ for AR 1
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AR 1

Figure 37 ¥ for AR 1
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AR 1

Figure 39T for AR 1
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Figure 45 Nondimensional length for AR 0.2
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AR 0.2

Figure 46 a/s for AR 0.2
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Figure 51 O for AR 0.2

76

www.manaraa.com

0.75

0.7

- 10.65

- 10.55

0.5

0.45

0.4



AR 0.2

Figure 52 Q for AR 0.2
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AR 0.2
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Figure 60 ¢y, for AR 0.2
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CHAPTER 7: EXAMPLES

In order to demonstrate the application of the model, a spatial slider-crank mechanism is
analyzed. This mechanism is recognized as revolute-spherical-spherical-prismatic (RSSP). The kinematic

analysis of the mechanism is based in the rigid RSSP, as presented by Parlaktas [33].

Figure 62 Spatial slider-crank mechanism.

Figure 62 shows the angle and length parameters used to construct the mechanism, and they are
defined in Table 4. The position vector loop is presented in equation (121), and provides three equations,

three unknowns (®, 0, s) system:
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Table 4 RSSP parameters

Parameter Name Description Value
12 Crank length 25 mm
13 Coupler length 150 mm
p Distance of the common perpendicular |OC]| 20 mm
f Distance of crank elevation |OA0| 129 mm
0 Crank angle 0°-360°
& Angular offset 80°
S Slider position variable
f 1+ Ly [Re(0)1] = p ] + 5 “[Re (=1 + L3 " [Re (=B)R,, ()R, (0)]] (121)

where, | is the identity matrix, ® and © are pseudo rigid body angles. This equation expands in the

following three components:

Ly sin(®) sin(é) — L, sin(6) —p =0 (122)
L, cos(6) — Ls[cos(®) cos(¢) + cos(P) sin(0) sin(¢)] —s *sin(é) =0 (123)
f — L3[sin(0) cos(¢é) — cos(P) cos(0) sin(¢)] — s * sin(§) (124)

Using equation (58), and combining equations (74) and (75) the following system solves for
PRMB angles T'and Y.
P=Y+T (58)

{C}IxxG

E
my = ]/K@ ZIRG)Z SIH(ZF) (125)

Partial differentiation of equations (122)-(124) with respect to 8 yields another 3x3 system of
equations solving for (3<1> 90 ds

369 29
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Ls cos() sin(¢) Z—Z — L, cos(8) =0 (126)

L3[sin(0@) cos(§) + cos(®) cos(0) sin(é)] g—(; — L, sin(@) — sin(§) g—;

(127)
P
+ Lg sin(®) sin(0®) sin(¢) 20" 0
) ) a0 ds
L3 [cos(0) cos(§) + cos(®) sin(0) sin(¢)] FT + cos(§) T
(128)
P
+ L4 sin(®) cos(0) sin(§) 20" 0
Differentiation of equations (58) and (125) with respect of 8 yields a 2x2 system to find (Z—;,g—;)
do® o0y or
R R 129
ae 06 + a6 (129)
{c}lxxG a X E | [29 in(2I) 00 + 262cos(2D) 61“] (130)
(1—p)Lag  Yrep r[#PSMel) gy costel) 59

Using the principle of virtual work for the RSSR mechanisms, an expression of the torque related

to the crack angle was obtained:

vy .6 o

= — (131)
0  (1—y)L 06

Wy Ef. ar 90
9B _ g 2 i e b 132
30 vKeo I [IRG) sin(2I) 3 + (I — Iz cos(2I))0 66] (132)

vy Vg
_ T 59— LB sg = 133
T280 = —o-00 — =260 = 0 (133)
T, = e Y6Y+ K E[I 02 sin(2) ar+(1‘ I cos(2I))0 a@] (134)
2= =L ag " YR |'RY S5 R €OS 26
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The following figure shows the relationship between the input torque and the crank angle for the

mechanism parameters specified in Table 4.

Input Torque vs Crank Angle

0.02
0.015
0.005 // \

E
Z
|_
0 \ /
0 50 100 0 200 250 300 /50 400
-0.005 ~__
-0.01
0 [deg]
Figure 63 Input torque vs crank angle in RSSP
Slider position vs crank angle
0.14
0.12 \\ /‘
0.1 \ /
__ 008
E \_/
* 0.06
0.04
0.02
0
0 50 100 150 200 250 300 350 400
0 [deq]

Figure 64 Slider position vs crank angle in RSSP
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Figure 65 Compliant RSSP

Another example, where the model can be easily applied is in a compliant double slider spatial

mechanism where the relative positions are known and the applied force is unknown.

The main difference between a planar and a spatial double slider is that the planes of
displacement of both sliders are in different planes. In Figure 66, it can be observed a planar compliant

double slider in shaded blue whereas the spatial compliant double slider is solid.

Both sliders are free to move only along the linear slots which orientations are depicted as dotted
lines. The compliant member is fixed to the slider in the base along the positive x-axis and is attached to
the second slider through a spherical joint. In spherical joints, only forces can be transmitted between
connecting members. In the following example, the angle of rotation between the inclined slot and the y-

axis is 30°. For this particular application we have the following parameters.
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Table 5 PSSP parameters

Parameter | Value Description

a 0.4691m Horizontal coordinate position of free end with respect of fixed frame
b 0.15565m Vertical coordinate position of free end with respect of fixed frame

c -0.024505m | Out of plane coordinate position of free end with respect of fixed frame
h 0.005m Height of the beam

w 0.0Im Width of the beam

a 120° Force angle in the yz-plane

B 90° Force angle in the xy-plane

L 0.5m Length of the beam

In order to calculate the magnitude of the force applied by an actuator along the inclined slider,

the 3D PRBM is used to generate a system of equations. The unknowns are @, y,0, T, Y, {D}FZ and

{D}Fy. The material of the beam is steel with a Young’s modulus of 200 GPa. Using the nominal value of

Kg = 2.513251 for AR of 0.5, the system of equations is solved. The first three equations can be solved

independently to obtain @, y and @. Then, the non-linear system of equations (138-139) is solved to

obtain I" and Y. Finally, we solve the non-linear system of equations (140-141) to obtain {D}FZ and {D}Fy.

@ =tan™! (g) (135)
@ - o
STCRO)
ZL (137)
_ -1 cos @
@ = tan —(%_1)_{_)/
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{c}
LG E
— Y —yKg—1,0%sin(2I) | =0
<(1_y)L y @L R Sln( ))

d=Y+T

R 20 ) =0
Y Y Y@L( rcos(2I))

{©
yLPE sin@ — B P
z 1-y)L

(138)

(139)

(140)

(141)

Once the y and z force components in the {D} frame are determined, the equation of force

mapping of frames {A} and {D} is used to calculate the force magnitude applied by the linear actuator.

This process can be repeated with the predicted value of K, = f(a, 8, §, AR) using the regression for AR

0.5 to obtain a more refined estimate of the force magnitude.

||F||sin a cos B
PIF = R,T(O)R,T (@) | IF|Isina sin B
[IF]||cos a

Using the z-component of the previous equation:

{D}FZ = ||F|| cosa cos ® — ||F|| sina sin 8 sin ®

Results are presented in the Table 6.
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Table 6 Results from compliant spatial double slider

Parameter Value Parameter Value
P -8.946° Y -0.6635°
Y 0.83468 {D}Fy 86.13 N
o 22.182° {D}FZ -35.62 N
r -8.28827° IFI 99.16 N

“Isometric *Right

Figure 66 Double slider mechanisms. Left: Isometric view. Right: Front view

94

www.manharaa.com




CHAPTER 8: CONCLUSIONS

The first three-dimensional pseudo-rigid-body model (3-D PRBM) for straight cantilever beams
with rectangular cross section was presented. The model is capable of capturing the behavior of the
neutral axis of a beam loaded with an arbitrary force end-load. Using the 3-D PRBM designers can

predict out of plane bending of spatial beams used in compliant mechanisms.

The data set used to develop the PRBM parameters was obtained solving a system of differential
equations that describe the neutral axis of an inextensible beam and the rotation of the rectangular cross

section about the neutral axis.

The PRBM approximates the relative position and orientation of the ends of a compliant beam.
Model parameters have been obtained for several aspect ratios and the results have been verified using

ANSYS. The model’s use in design has been illustrated for two spatial compliant mechanisms.

There are several features of this PRBM which are novel, and are unique contributions of this
dissertation. Specifically, the kinematic arrangement of the beam is new. Planar PRBM’s use revolute
joints whereas the spatial PRBM uses spherical joints. More importantly, the stiffness of the 1* spherical
joint has a number of novel ideas. The joint decomposes the motion of the beam tip into three different

effects including beam bending and two different out of plane motion effects. The first out of plane effect

Ly G

Y. The second
(1-y)L

is the result of the torsion in the beam and is related to the torsional stiffness term

out of plane effect is due to tensorial stiffness of the rectangular beam, and results in smaller deflections
when the beam is wider. This effect is associated with the term yKG,?G)ZIT sin(2I). The quadratic

dependence on O is predicted by virtual work but has not been previously published in literature. These

effects vanish in the planar and axisymmetric beam cases which have been discussed in previous work.
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It is hoped that future work using this 3D PRBM will yield design insights that will improve the

design of compliant mechanisms.
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Appendix A Nomenclature

W, 6,9)

)

Z,0,¥)
(cp» Cor Cy)
Vr

£

Euler angles in the XZX angle rotation set for spatial beam
Curvature about x-axis

Curvature about y-axis

Curvature about z-axis

Relative position coordinates from beam ends

Fixed end of the beam

Free end of the beam

Force applied at the free end of the beam
Describes the orientation of frame {S} with respect to {Q}

Angles of a spherical coordinate system to define force orientation
Young’s modulus
Modulus of rigidity

Second moment of area

Vector defined in the frame {Q}

Arc length

Quantities with tilde are dimensionless

Position coordinates from fixed end to free end in x-,xy- and z- components
Characteristic radius factor

Bending pseudo-rigid-body angle

Twisting pseudo-rigid-body angle

Euler angles in the XZX angle rotation set for the second spherical joint
Parametric angle coefficients

Torsion potential energy

Bending potential energy
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Appendix B Regressions and Statistical Values for PRBM Parameters

PRBM constants parameter regressions and statistical analysis are presented in Tables A-H where

AR is height divided by width of rectangular cross-section and N is number of points.

Table A Coefficient vector for parameter fits with AR=1

AR=1
BCe BKe BV
1.245999 | 2.550507 | 0.835116
0.001713 -0.0054 -0.0015
0.002588 | 0.016341 | -0.00335
0.000492 | -0.01413 | 0.000105
-2.26E-05 | -0.00095 | 6.35E-05
0.026739 | -0.13772 | -0.02076
-0.01045 | 0.094145 | 0.006174
-0.00014 | 0.022755 | -0.00085
-0.00356 | 0.026582 | 0.002473
-0.01142 | 0.002288 | 0.011436
R® R® R®
0.9762 0.9716 0.9767

Table B Coefficient vector for parameter fits with AR=0.8

AR=0.8
BCw B% B, Bi, By BC‘I'/CD
1.008355 1.01909 | 1.242824 | 2.566706 | 0.837714 | -0.86756
0.000689 | 0.001958 | 0.000575| 0.001684 | -0.00056 | 0.005649
0.000954 | 0.002617 0.00211 | 0.005865| -0.00238 | 0.031939
-0.00667 | -0.01161 | 0.002228 | -0.03174 | -0.00097 | -0.09202
-0.00529 -0.0084 | 0.002468 | -0.01959 | -0.00165 | -0.10064
-0.01335 | -0.03221 | 0.035084 | -0.17302 | -0.02732 | -0.07542
0.005251 | 0.016781 | -0.01365| 0.111731| 0.008344 | 0.07655
0.001661 | 0.002792 | -9.14E-06 | 0.007144 | -0.00025 | 0.012466
0.015721 | 0.022817 | -0.00677 | 0.063974 | 0.004029 | 0.174033
0.001873 | -0.00095 | -0.01147 | 0.006116 | 0.011314 -0.0732
-0.0277
R? R? R? R? R? R?
0.9243 0.9173 0.9785 0.977 0.9725 0.9122
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Table C Coefficient vector for parameter fits with AR=0.5

AR=0.5

BCw B% Beg Bk, B—V) BC‘I'/CD
1.040541 | 1.053027 1.23712 | 2579304 | 0.843234 | -0.72585
0.007321 | 0.009098 | -0.00153 | 0.004591 | 0.001599 | 0.007905
0.004741 | 0.007709 0.00179 | 0.008775| -0.00212 | 0.072041
-0.03174 | -0.03625 | 0.005659 | -0.03775| -0.00447 | -0.20718
-0.01923 -0.0214 | 0.004365 | -0.02744 | -0.00342 | -0.25048
-0.09247 | -0.13132 | 0.076997 | -0.35572 | -0.06017 | -0.18826
0.059883 | 0.092384 | -0.03301 | 0.263092 | 0.019184 | 0.350746
0.001525 | 0.006472 | 1.12E-05| 0.014848 | -0.00048 | 0.053669
0.076919 | 0.082735 -0.0131 | 0.103684 | 0.009143 | 0.527036
-0.00553 | -0.01092 | -0.01414 | 0.002035 | 0.014066 | -0.21456
-0.07516

R’ R’ R R R R
0.9262 0.923 0.9781 0.9741 0.9709 0.9245
Table D Coefficient vector for parameter fits with AR=0.2
AR=0.2

BCw B% BCe BKe BV BC‘I'/CD
1.309146 | 1.062439 | 1.229012 | 2.599026 | 0.848115 | -0.79096
0.035516 0.00602 | -0.00111 | 0.010917 | 0.000653 | -0.03162
0.093532 | 0.025165 | 0.002263 | 0.006868 | -0.00327 | 0.163591
-0.18577 | -0.06928 | 0.011942 | -0.08636 | -0.00852 | -0.30359
-0.11482 | -0.04227 | 0.009996 | -0.06325 | -0.00723 | -0.43315
-1.62345 | -0.11298 | 0.321669 | -0.76976 | -0.25597 | 2.691355
1.891187 | 0.398936 -0.1518 | 0.713689 | 0.082649 | 0.770892
0.312275 | 0.026524 | 0.026272 | -0.04631 -0.0282 | 0.491652
0.47909 | 0.256834 | -0.04031 | 0.292262 | 0.028405 | 1.300664
-0.23096 | -0.08232 | -0.02153 | -0.01243 | 0.023181 | -0.68136
-0.15455

R’ R’ R R R R

0.8559 0.9438 0.9837 0.9603 0.9842 0.9484

Table E Average and standard deviation of PRBM constants for AR=1

AR=1, N=27404
Y Kg Clp Co C¢ Cy/p
Mean 0.831533 2.520213 1 1.250809 | 1 -1
Std dev. 0.004615 0.036295 0 0.005545 | 0 0
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Table F Average and standard deviation of PRBM constants for AR=0.8

AR=0.8, N=27404
Y Kg Cy Co Co Cy/p
Mean 0.832444 2.513146 1.00132 1.250225 1.001808 -0.9754
Std dev. 0.003992 0.029249 0.003688 0.004929 0.00537 0.041395

Table G Average and standard deviation of PRBM constants for AR=0.5

AR=0.5, N=27404
Y Kg Cy Co Co Cy/p
Mean 0.83257 2.513251 1.006218 1.250041 1.006583 -0.93683
Std dev. 0.004228 0.03166 0.01476 0.005325 0.016347 0.105167

Table H Average and standard deviation of PRBM constants for AR=0.2

AR=0.2, N=20527
Y Kg Clp Co C¢ Cy/p
Mean 0.832227 2.525501 1.032149 1.249723 1.024043 | -0.82221371
Std dev. 0.00602 0.045842 0.063924 0.00787 0.037838 | 0.20329551
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Appendix C 3D PRBM Results
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Appendix D Code

This is the Matlab code for numerical integration of nondimensional equations.

function three_D_egns_non_dim(v);

% this function looks for the value of beam length in non_dimmensional-equations where curvature
reaches maximum

% then uses the max beam legth to numericaly integrate the non_dimmensional-equations with greater
detail.

clear all

clc

format longG

format compact

%initial guess for total beam lenth
S_hat = 2*pi;
for AR =[1,0.8,0.5,0.2]%][1,0.8,0.5,0.2]
max_s_layer=[];
% eta goes from 90 to 355 degrees
for eta = degtorad([90:10:170])%90:10:170
for xi = degtorad([15:5:165])%15:5:165
V_i = num2str(radtodeg(eta));
V_j = num2str(radtodeg(xi));
v_k = num2str(AR);
Cap_sigma =[];
Cap_omega =[];
Cap_psi =[I;
%number of points in the coarse integration along the beam length for finding initial k_hat_max and
respective S_d_hat_max
num_iter_init = 9999;
% initialize matrices for integration result data
k1 _hat =[];
k2_hat =[];
k3_hat =[];
phi =[];
theta =[];
psi =[];
h_ X =[I;
h_y =[I;
h .z =[I;
h S hat i =[];
phi_i =[I;
theta_i =[];
psi_i =[];
h_ X_i =[];
h_Y_ i =[];
h Zi =[],
eta_xi_AR =[radtodeg(eta),radtodeg(xi),AR]
% integrates each trajectory from a starting point on the x-axis of the phase portrait
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[s_hat_i,g_hat_i] = ode45(@beam_3D_nondim,[0:-S_hat/num_iter_init:-S_hat],[0, 0, 0, O, -1e-6, 0, 0, 0,
0);
last_i=size(s_hat_i,1);
[pks0,locs0] = findpeaks(q_hat_i(:,3));
if eta == degtorad(180)
[pks0,locs0] = findpeaks(g_hat_i(:,2));
end
if numel(locs0)==
locsO(1)=size(s_hat_i,1);
end
h_S_hat max =s_hat_i(locs0O(1));
% h_S_hat max =-2.62
num_iter = 50;
h_S hat =[];
%Integrates from free end to fixed end
[s_hat,q_hat] = ode45(@beam_3D_nondim,[0:h_S_hat_max/num_iter:h_S_hat_max],[0, 0,0, 0, -1e-6,
0,0,0,0]);
last=size(s_hat,1);
%stores the results
%curvatures at moving frame {A} which will be the fixed end of the beam
k1l hat =[k1 hat, q_hat(:,1)];
k2_hat =[k2_hat, q_hat(;,2)];
k3 hat =[k3_hat, q_hat(:,3)];
%euler angles from free {H} end end to 'moving’ fixed end {A}
phi = [phi, qg_hat(:,4)];
theta =[theta, q_hat(:,5)];
psi = [psi, q_hat(;,6)];
%Distance of 'moving' frame {A} seen from the frame {H} at the free end of the beam
h X =[h_ X, qg_hat(:,D];
h 'Y =[hY, g_hat(;8)];
h_Z =[h_Z, q_hat(:9)];
%Beam length in the negative x direction at frame {a}
h S hat =[h_S hat, s hat];
a_pos = [I;
aF=1]
dF=1;
%iteration to find a, b and ¢ viewd from Origin
for i = 1:last
%Rotation from {A} to {H} to express vectors from {H} to {A}
Cb=[100
0 cos(phi(i)) sin(phi(i))
0 -sin(phi(i)) cos(phi(i))];
Bb=[cos(theta(i)) sin(theta(i)) O
-sin(theta(i)) cos(theta(i)) 0
001];
Ab=[100
0 cos(psi(i)) sin(psi(i))
0 -sin(psi(i)) cos(psi(i))];
a_pos = [a_pos;[-Cb*Bb*Ab*[h_X(i,1);h_Y(i,1);h_Z(i,)117;
end
% vector position of free end of the beam seen from frame {A}
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abc =[-h_S_hat,a_pos];

a_S_hat=abc(:,1);

a_hat = abc(:,2);

b_hat = abc(:,3);

¢_hat = abc(:,4);

% angle measured from positive Y to positive Z in the origin coordinate
Cap_phi = atan2(c_hat,b_hat);

Gamma = ((b_hat./a_S_hat)."2+(c_hat./a_S_hat)."2+(1-(a_hat./a_S_hat)).”2)./(2*(1-(a_hat./a_S_hat)));
Gamma(isnan(Gamma))=0.83;

Cap_theta = atan2(b_hat./(a_S_hat.*cos(Cap_phi)),(a_hat./a_S_hat-1)+Gamma);
Cap_theta(isnan(Cap_theta))=0;

Cap_theta_d=rad2deg(Cap_theta);

first_1 =find(Cap_theta d <= 1,1,'last);
first_1(isempty(first_1))=size(Cap_theta_d,1);

% last_1 = find(roundn(rad2deg(psi),-6) <= -1,1,'last’);

% last_1(isempty(last_1))=size(psi,1);

last_1 =find(Cap_theta_d <=70,1,'last");
last_1(isempty(last_1))=size(Cap_theta_d,1);

%Dbeing saved for use in function matrix assembly
max_s_layer=[max_s_layer;first_1,last_1];

a_S_hat=abc(1:last,1);

Cap_phi =Cap_phi(1:last,1);

% Cap_phi_d=rad2deg(Cap_phi);

Gamma =Gamma(1:last,1);

Cap_theta =Cap_theta(1:last,1);

% Cap_theta_d=rad2deg(Cap_theta);

% Additional rotations

%Rotation from {A} to {D}

aM PRBM=];
for i =1:last
Ab=[100
0 cos(psi(i)) sin(psi(i))

0 -sin(psi(i)) cos(psi(i))];
Bb=[cos(theta(i)) sin(theta(i)) O
-sin(theta(i)) cos(theta(i)) O
00 1];
Cb=[100
0 cos(phi(i)) sin(phi(i))
0 -sin(phi(i)) cos(phi(i))];
A2f=[100
0 cos(Cap_phi(i)) -sin(Cap_phi(i))
0 sin(Cap_phi(i)) cos(Cap_phi(i))];
B2f=[cos(Cap_theta(i)) -sin(Cap_theta(i)) 0
sin(Cap_theta(i)) cos(Cap_theta(i)) 0
001];
%Force components viewed from {D}
a_F =[a_F;[Cb*Bb*Ab*F_O_init]7;
d_F = [d_F;[B2f*(-1)*A2fA(-1)*Cb*Bb*Ab*F_O_init]'];
% From {D} to {H} we have three rotations:Rx(Cap_Sigma)Rz(Cap_Omega)Rx(Cap_phi)
Rxzx = B2f*A2f*Ch*Bb*Ab;
Cap_omega = [Cap_omega;atan2(sqrt(Rxzx(2,1)"2+Rxzx(3,1)2),Rxzx(1,1))];

141

www.manaraa.com



Cap_sigma = [Cap_sigma;atan2(Rxzx(3,1)/sin(Cap_omega(i)),Rxzx(2,1)/sin(Cap_omega(i)))];
Cap_psi = [Cap_psi;atan2(Rxzx(1,3)/sin(Cap_omega(i)),-Rxzx(1,2)/sin(Cap_omega(i)))];

% Cap_sigma = [Cap_sigma;0];

% Cap_omega = [Cap_omega;atan2(Rxzx(2,1),Rxzx(1,1))];

% Cap_psi = [Cap_psi;atan2(Rxzx(3,2),Rxzx(3,3))];

end

C_theta = -theta(1:last,1)./Cap_theta;

if eta == degtorad(90)

C_psi =NaN(last,1);

C_phi =NaN(last,1);

else

locatorl = find(-rad2deg(psi)<1le-2);

C_psi = -psi(1:last,1)./Cap_psi;

C_psi(find(((C_psi(:,1)>=2))==1),1)=[NaN];

C_psi(find(((C_psi(:,1)<=-2))==1),1)=[NaN];

C_psi([locatorl],:)=1,

C_psi(isnan(C_psi))=0;

C_phi = -phi(1:last,1)./Cap_phi;

C_phi(isnan(C_phi))=0;

end

alpha = acosd(a_F(:,3));

beta = atan2d(a_F(:,2),a_F(:,1));

%Dbeta measured positive from x+ to y+

beta = (beta < 0).*(360*ones(size(beta,1),1)+beta)+(beta > 0).*beta;

Cap_Upsilon = (2*AR*(1+v).*Gamma.*(ones(last,1)-
Gamma).*(a_S_hat."2).*d_F(:,3).*sin(Cap_theta))/(1+AR"2);
Cap_Upsilon_d=rad2deg(Cap_Upsilon);

Cap_Gamma=Cap_phi-Cap_Upsilon;

Cap_Gamma_d=rad2deg(Cap_Gamma);

K theta = (2.*a_S_hat"2.*d_F(:,2).*AR)./(Cap_theta.*((1+AR."2)-(1-AR."2).*cos(2.*Cap_Gamma)));
C1=Cap_psi./Cap_phi;

C2=Cap_psi./Cap_theta;

C3=phi(L:last,:)./psi(1:last,:);

C4=psi(1:last,:)./theta(1:last,:);

analysis_nondimensional =
roundn([radtodeg(eta)*ones(last,1),radtodeg(xi)*ones(last,1),a_S_hat,AR*ones(last,1),alpha,beta,abc(1:la
st,2)./a_S_hat,abc(1:last,3)./a_S_hat,abc(1:last,4)./a_S_hat,rad2deg(Cap_psi),Gamma,radtodeg(Cap_theta
),rad2deg(Cap_sigma),rad2deg(Cap_omega),radtodeg(Cap_phi),K_theta,rad2deg(Cap_Gamma),rad2deg(
Cap_Upsilon),C_psi,C_theta,C_phi,C1,C2,C3,C4,rad2deg(-phi),rad2deg(-theta),rad2deg(-psi)],-6);
% analysis_nondimensional =
roundn([radtodeg(eta)*ones(last,1),radtodeg(xi)*ones(last,1),a_S_hat,AR*ones(last,1),q_hat(1:last,1:3),ra
dtodeg(q_hat(1:last,4:6)),q_hat(1:last,7:9)],-6);

% analysis_nondimensional(1,:)=[];

v_name = [‘analysis nondimensional eta ',v_i," deg - xi ',v_j,'deg - AR '\v_k,".mat7;
save(v_name,'analysis_nondimensional’)

end

end

v_name2 = ['max layer - AR 'v_k,".mat;

save(v_name2,'max_s_layer’)

end

function dkds = beam_3D_nondim(s,k)

142

www.manaraa.com



% Applied force at the beam end viewed from the origin before the beam starts the defection

F_O_init = [sin(eta)*cos(xi); sin(eta)*sin(xi); cos(eta)];

C=[100
0 cos(k(4)) sin(k(4))

0 -sin(k(4)) cos(k(4))]1;
B=[cos(k(5)) sin(k(5)) 0
-sin(k(5)) cos(k(5)) 0

001];
A=[100
0 cos(k(6)) sin(k(6))
0 -sin(k(6)) cos(k(6))];

% Follower Force at beam end viewed from the origin. Shows how it changes direction as it deflects the

beam.

F_O =C*B*A*F_O_init;

Fy prime =F_O(2);

Fz_prime =F_0O(3);

v=0.3;

dkds = zeros(size(k));

%curvature with respect to origin because of how load is applied.

d k1 =((2*(1+V)*(1-ARM2))/(1+ARM2))*k(2)*Kk(3);

d_k2 = (ARM2-((1+AR"2)/(2*(1+V))))*k(1)*k(3)+AR*Fz_prime;
d_k3 = ((AR"2-2*v-1)/(2*(1+Vv)*AR"2))*k(1)*k(2)-Fy_prime/(AR);

d_phi = k(1)+(k(2)*cos(k(4))*cos(k(5))-k(3)*sin(k(4))*cos(k(5)))/sin(k(5));

d_theta = k(2)*sin(k(4))+k(3)*cos(k(4));

d_psi = (-k(2)*cos(k(4))+k(3)*sin(k(4)))/sin(k(5));

d_X = cos(k(5));

d_Y = cos(k(6))*sin(k(5));

d_Z =sin(k(6))*sin(k(5));

dkds = [d_k1 d_k2 d_k3 d_phid_thetad_psid _Xd_ Y d_Z];
end

end

This is the Matlab code for matrix assembly.

clc

clear all

for AR =11,0.8,0.5,0.2]%[1,0.8,0.5,0.2]
v_k = num2str(AR);
nonfollower_total_matrix = [];
v_name2 = ['max layer - AR '\v_k,"matT;
load(v_name2,'max_s_layer")
s_min=max(max_s_layer(:,1));
s_max=min(max_s_layer(:,2));
length=s_max-s_min+1;

for eta = degtorad([90:10:170])%90:10:170

for xi = degtorad([15:10:165])%15:5:165
load_cond = [radtodeg(eta),radtodeg(xi),AR]
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V_i = num2str(radtodeg(eta));

V_j = num2str(radtodeg(xi));
v_name = [‘analysis nondimensional eta ',v_i,' deg - xi ',v_j,'deg - AR '\v_k,".mat;
load(v_name,'analysis_nondimensional’)
nonfollower_total matrix =
[nonfollower_total_matrix;analysis_nondimensional(s_min:s_max,:),length*ones(length,1)];

vhame2 = ['non follower total _matrix 90-170 AR "v_Kk," . mat];
save(vname2,'nonfollower_total matrix’)

end

end

end

This is the Matlab code for surface plotting.

clc

clear all

j=0;

for AR =11,0.8,0.5,0.2]%(1,0.8,0.5,0.2];
load(['non follower total_matrix 90-170 AR ',num2str(AR),.mat1);
last = nonfollower_total_matrix(1,29);

alpha = nonfollower_total_matrix(:,5);

beta = nonfollower_total_matrix(:,6);

ari = find(nonfollower_total_matrix(:,4) == AR,1,first");
arf = find(nonfollower_total _matrix(:,4) == AR,1,'last);
etal=nonfollower_total_matrix(ari:arf,1);
xil=nonfollower_total_matrix(ari:arf,2);

h_S_hatl = nonfollower_total matrix(ari:arf,3);

S hat = reshape(h_S_hat1,last,16,9);

a_hatl = nonfollower_total_matrix(ari:arf,7);
A=reshape(a_hat1,last,16,9);

b_hatl = nonfollower_total _matrix(ari:arf,8);
B=reshape(b_hat1,last,16,9);

¢_hatl = nonfollower_total_matrix(ari:arf,9);
C=reshape(c_hat1,last,16,9);

Cap_psi= nonfollower_total_matrix(ari:arf,10);
CAP_PSI = reshape(Cap_psi,last,16,9);

gamma = nonfollower_total_matrix(ari:arf,11);
Gamma = reshape(gamma,last,16,9);

Cap_theta= nonfollower_total_matrix(ari:arf,12);
CAP_THETA = reshape(Cap_theta,last,16,9);
Cap_sigma= nonfollower_total _matrix(ari:arf,13);
CAP_SIGMA = reshape(Cap_sigma,last,16,9);
Cap_omega= nonfollower_total_matrix(ari:arf,14);
CAP_OMEGA = reshape(Cap_omega,last,16,9);
Cap_phi= nonfollower_total _matrix(ari:arf,15);
CAP_PHI = reshape(Cap_phi,last,16,9);
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K _theta= nonfollower_total matrix(ari:arf,16);
K_THETA = reshape(K_theta,last,16,9);
Cap_Gamma= nonfollower_total_matrix(ari:arf,17);
CAP_GAMMA = reshape(Cap_Gamma,last,16,9);
Cap_Upsilon= nonfollower_total _matrix(ari:arf,18);
CAP_UPSILON = reshape(Cap_Upsilon,last,16,9);
C_psi= nonfollower_total_matrix(ari:arf,19);
C_PSI = reshape(C_psi,last,16,9);
C_theta= nonfollower_total matrix(ari:arf,20);
C_THETA = reshape(C _theta,last,16,9);
C_phi= nonfollower_total_matrix(ari:arf,21);
C_PHI = reshape(C_phi,last,16,9);
¢_1=nonfollower_total matrix(ari:arf,22);
C_1 =reshape(c_1,last,16,9);
iter=8;
for i = [last:-floor((last-1)/iter):1]
figure(1+17%));
title(['AR ',num2str(AR)])
hold all
surf(squeeze(A(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel("\eta")
set(gca, XTick',1:1:9)
set(gca, X TickLabel',{"90','100','110",'120",'130",'140",'150",'160','170'})
ylabel("\xi")
set(gca,'YTick',1:3:16)
set(gca, Y TickLabel' ,{'15','45','75",'105",'135",'165'})
zlabel(‘a/s','interpreter’,'latex’)
colorbar
view(3)
if i<=((last-1)/iter)
set(gcf, PaperType','usletter’)
print(‘-dtiff','-r600',['1la_hat_AR',;num2str(10*AR)]);
end
hold off
figure(2+17%j)
title(J'/AR ',num2str(AR)])
hold all
surf(squeeze(B(i,:,:)),squeeze(S_hat(i,:,})))
xlabel("\eta")
set(gca, XTick',1:1:9)
set(gca,' XTickLabel',{"90','200','2110",'120",'130','140','150",'160','170'})
ylabel("\xi")
set(gca,'YTick',1:3:16)
set(gca, Y TickLabel' ,{'15','45','75','105','"135','165'})
zlabel('b/s''interpreter','latex’)
colorbar
view(3)
if i<=((last-1)/iter)
set(gcf,' PaperType','usletter’)
print(‘-dtiff','-r600',['2b_hat_AR',num2str(10*AR)]);
end
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hold off

figure(3+17%j)

hold all

title(['AR ',num2str(AR)])

surf(squeeze(C(i,:,:)),squeeze(S_hat(i,:,)))

xlabel(\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110','120",'130",'140','150','160','170'})

ylabel("\xi")

set(gca, Y Tick',1:3:16)

set(gca,'YTickLabel',{'15','45','75','105",'"135','165'})

zlabel('c/s','interpreter’,'latex’)

colorbar

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)

print(-dtiff',-r600',['3c_hat_AR',;num2str(10*AR)]);

end

hold off

figure(4+17%j)

title(['AR ",num2str(AR)])

hold all

surf(squeeze(S_hat(i,:,))),squeeze(S_hat(i,:,))))

xlabel('\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110",'120",'130",'140','150','160','170'})

ylabel("\xi")

set(gca,'YTick',1:3:16)

set(gca, Y TickLabel' ,{'15','45','75','105','135','"165'})

zlabel(\~s','interpreter’,'latex")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf,' PaperType','usletter’)

print(-dtiff','-r600',['4_hat_AR',num2str(10*AR)]);

end

hold off

figure(5+17%j)

title(J'/AR ',num2str(AR)])

hold all

surf(squeeze(CAP_PSI(i,:,:)),squeeze(S_hat(i,:,:)))

xlabel("\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100",'110",'120",'130",'140','150','160','170'})

ylabel("\xi")

set(gca,"YTick',1:3:16)

set(gca,"YTickLabel',{'15','45",'75','105",'135",'165'})

zlabel('\Psi")
colorbar;

view(3)

if i<=((last-1)/iter)
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set(gcf,'PaperType','usletter’)
print('-dtiff','-r600',['5Cap_Psi_AR',num2str(10*AR)]);
end
hold off
figure(6+17%j)
title('AR ",num2str(AR)])
hold on
surf(squeeze(Gamma(i,:,:)),squeeze(S_hat(i,:,))))
xlabel(\eta")
set(gca, XTick',1:1:9)
set(gca, XTickLabel',{'90','100','110",'120",'130",'140",'150','160','170'})
ylabel('\xi")
set(gca,'YTick',1:3:16)
set(gca,"YTickLabel',{'15','45','75','105",'"135','165'})
zlabel(\gamma")
colorbar;
view(3)
if i<=((last-1)/iter)
set(gcf, PaperType','usletter’)
print(-dtiff','-r600',['6gamma_AR',num2str(10*AR)]);
end
hold off
figure(7+17%))
title(['AR ",num2str(AR)])
hold on
surf(squeeze(CAP_THETA(I,:,:)),squeeze(S_hat(i,:,:)))
xlabel("\eta")
set(gca, XTick',1:1:9)
set(gca,'XTickLabel',{'90','100','110",'120",'130",'140','150','160','170'})
ylabel("\xi")
set(gca,'YTick',1:3:16)
set(gca, Y TickLabel',{'15','45','75','105','"135','165'})
zlabel(\Theta")

colorbar;
view(3)
if i<=((last-1)/iter)
set(gcf,' PaperType','usletter”)
print(-dtiff','-r600',['7Cap_Theta_AR',num2str(10*AR)]);
end
hold off
figure(8+17%j)
title(['AR ',num2str(AR)])
hold all
surf(squeeze(CAP_SIGMA(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel("\eta")
set(gca,'XTick',1:1:9)
set(gca, XTickLabel',{'90','200','110",'120','130",'140",'150','160','170'})
ylabel("\xi")
set(gca,'YTick',1:3:16)
set(gca, Y TickLabel' ,{'15','45','75','105','135",'165'})
zlabel(\Sigma)
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colorbar;
view(3)
if i<=((last-1)/iter)

set(gcf,'PaperType','usletter’)
print('-dtiff','-r600',['8Cap_Sigma_AR',num2str(10*AR)]);

end

hold off

figure(9+17%j)

title('AR ",num2str(AR)])

hold all

surf(squeeze(CAP_OMEGA(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel(‘\eta")

set(gca,'XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110",'120",'130",'140",'150','160','170'})
ylabel("\xi")

set(gca,"YTick',1:3:16)

set(gca, Y TickLabel' {'15','45','75','105",'135",'165})

zlabel(\Omega")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)

print('-dtiff','-r600',['9Cap_Omega_ AR',num2str(10*AR)]);

end

hold off

figure(10+17%j)

title(J'AR ',num2str(AR)])

hold all

surf(squeeze(CAP_PHI(i,:,:)),squeeze(S_hat(i,:,:)))

xlabel("\eta")

set(gca, XTick',1:1:9)
set(gca,'’XTickLabel',{'90','100','110",'120",'130",'140','150','160','170'})
ylabel("\xi")

set(gca,'YTick',1:3:16)

set(gca, Y TickLabel',{'15','45','75','105",'"135','165'})

zlabel('\Phi")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf,' PaperType','usletter”)
print(-dtiff','-r600',['10Cap_Phi_AR',num2str(10*AR)]);

end

hold off

figure(11+17%j)

title([AR ,num2str(AR)])

hold all

surf(squeeze(K_THETAC(i,:,:)),squeeze(S_hat(i,:,:)))

xlabel("\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','200','110",'120','130",'140",'150','160','170'})
ylabel("\xi")
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set(gca, YTick',1:3:16)

set(gca, Y TickLabel',{'15','45",'75','105",'135",'165'})
zlabel('K_\Theta’)

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf,'PaperType','usletter”)
print('-dtiff','-r600',['11K_theta  AR',num2str(10*AR)]);
end

hold off

figure(12+17%j)

title(['AR ',num2str(AR)])

hold all
surf(squeeze(CAP_GAMMA(I,:,:)),squeeze(S_hat(i,:,:)))
xlabel('\eta")

set(gca,'XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110','120",'130",'140",'150','160','170'})
ylabel("\xi")

set(gca, YTick',1:3:16)

set(gca, Y TickLabel',{'15','45','75','105','"135','165'})
zlabel("\Gamma)

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)
print('-dtiff','-r600',['12Cap_Gamma_AR',num2str(10*AR)]);
end

hold off

figure(13+17%j)

title(J'AR ',num2str(AR)])

hold all
surf(squeeze(CAP_UPSILON(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel("\eta")

set(gca, XTick',1:1:9)

set(gca, X TickLabel',{'90','100','110",'120",'130",'140','150','160','170'})
ylabel("\xi")

set(gca,'YTick',1:3:16)

set(gca, Y TickLabel' ,{'15','45','75','105','"135','"165'})
zlabel(\Upsilon )

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf,' PaperType','usletter”)
print('-dtiff','-r600',['13Cap_Upsilon_AR',num2str(L0*AR)]);
end

hold off

figure(14+17%j)

title(['AR ',num2str(AR)])

hold all

surf(squeeze(C_PSI(i,:,:)),squeeze(S_hat(i,:,)))
xlabel("\eta")
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set(gca, XTick',1:1:9)
set(gca, XTickLabel',{'90','200','110",'120','130",'140",'150','160','170'})
ylabel("\xi")

set(gca,"YTick',1:3:16)
set(gca,"YTickLabel',{'15','45','75','105",'"135','165'})
zlabel('C_\psi’)

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)
print('-dtiff',-r600',['14C_psi_AR',num2str(L0*AR)]);

end

hold off

figure(15+17%j)

title(J'/AR ',num2str(AR)])

hold all

surf(squeeze(C_THETA(I,:,})),squeeze(S_hat(i,:,:)))
xlabel('\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110','120",'130",'140','150','160','170',"})
ylabel("\xi")

set(gca,'YTick',1:3:16)

set(gca, Y TickLabel' ,{'15','45','75','105','135','"165'})
zlabel('C_\theta")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf,' PaperType','usletter’)
print('-dtiff','-r600',['15C theta_ AR',num2str(10*AR)]);

end

hold off

figure(16+17%j)

title(J'AR ',num2str(AR)])

hold all

surf(squeeze(C_PHI(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel("\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110",'120",'130",'140','150',"160','170'})
ylabel("\xi")

set(gca, YTick',1:3:16)

set(gca, Y TickLabel' ,{'15','45','75','105','"135",'"165'})
zlabel('C_\phi")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)
print('-dtiff',-r600',['16C_phi_AR',num2str(10*AR)]);

end

hold off
figure(17+17%j)
title(['AR ',num2str(AR)])
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hold all
surf(squeeze(C_1(i,:,:)),squeeze(S_hat(i,:,:)))
xlabel(\eta")

set(gca, XTick',1:1:9)

set(gca, XTickLabel',{'90','100','110','120",'130",'140','150','160','170'})
ylabel("\xi")

set(gca,'YTick',1:3:16)
set(gca,"YTickLabel',{'15','45','75','105",'"135','165'})
zlabel('C_\Psi_/ \Phi")

colorbar;

view(3)

if i<=((last-1)/iter)

set(gcf, PaperType','usletter’)
print('-dtiff','-r600',['17C_1_AR',num2str(10*AR)]);
end

hold off

end
=+
end

This is the Matlab code for numerical integration of dimensional equations.

function [master_matrix] = three_D_eqns_dim(v)
clear all

clc

format shortG

format compact

%Beam, force and material parameters
L=1;

v=0.3;

E =200e9;

G = E/(2*(1+V));

C_thetal =[];

C_theta2 =[];

C _psil =[];

C_phil =J;

analysis_nondimensional =[];

for F_mag =[100]%200,750,1000

for width = [0.01]%60.05,0.02,0.0125,0.01
height = 0.01;

AR = height/width;

1zz = width*height"3/12;

lyy = height*width"3/12;
shat=L/sqrt(E*Izz/(F_mag*AR))

Ibar = (lyy+1z2)/2;

Ir = (lyy-122)/2;
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IXX = 1zz+lyy;
% K=width*height"3*(1/3-0.21*AR*(1-(AR"4)/12));
num_iter = 99;
for eta = degtorad([135])%090:20:170
for xi = degtorad([90])%10:20:170
V_i = num2str(radtodeg(eta));
V_j = num2str(radtodeg(xi));
v_k = num2str(AR);
F_mag_eta_xi_AR =[F_mag radtodeg(eta),radtodeg(xi),AR]
% initialize matrices for integration result data
k1 =[];
k2 =[I;
k3 =[I;
phi =[J;
theta =[];
psi =[1;
h X =[;

h_S =[I;
% integrates each trajectory from a starting point on the x-axis of the phase portrait
[s,q] = ode45(@beam_3D_units,[0:-L/num_iter:-L],[0, 0, 0, 0, -1e-6, O, O, 0, 0]);
Y%stores the results
%curvatures at moving frame {A}, which will be the fixed end of the beam
k1l =[k1, qC1I;
k2 =[k2, q(.2)];
k3 =[k3, q(.3)I;
%euler angles from free-end frame {H} to 'moving' frame {A} at fixed end
phi =[phi, q(:,4)];
theta =[theta, q(:,5)];
psi =[psi, q(:.6)];
%Distance of 'moving' frame {A} seen from the frame {H} at the free-end of the beam
h_ X =[h_X, qC7)I;
h.Y =[h_Y, qC8)I;
hz =[h_2Z qC9L
%Beam length in the negative x direction at frame {A}
h 'S =[h_S, s];
last=size(h_S,1);
curvatures = [k1(last,1),k2(last,1),k3(last,1)];
angles = roundn(rad2deg([phi(last,1),theta(last,1),psi(last,1)]),-6)
h_xyz=q(last,7:9)
a_pos = [I;
aF=[
%iteration to find a, b and ¢ viewd from Origin
fori=1:num_iter+1
%Rotation to express vectors in {H} to the {A}
Cb=[100

0 cos(phi(i)) sin(phi(i))

0 -sin(phi(i)) cos(phi(i))];
Bb=[cos(theta(i)) sin(theta(i)) O
-sin(theta(i)) cos(theta(i)) O
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001];
Ab=[100
0 cos(psi(i)) sin(psi(i))
0 -sin(psi(i)) cos(psi(i))];
a_R_h=Cb*Bb*Ab;
a_pos = [a_pos;[-a_R_h*[h_X(i,1);h_Y(i,1);h_Z(i,1)1];

a_F =[a_R_h*[F_mag*sin(eta)*cos(xi); F_mag*sin(eta)*sin(xi); F_mag*cos(eta)]]’;

% th=atan2d(a_F(1,2),a_F(1,3))

end

a R h

% vector position of free end of the beam seen from frame {A}

abc = [a_pos(size(a_pos,1),:)];

%(a,b,c) position coordinates viewed from {A} (last iteration)
a=abc(;,1)

b = abc(:,2)

¢ = abc(:,3)

figure (1)

hold all

grid on

axis off
plot3(a_pos(:,1),-a_pos(:,3),a_pos(:,2),'LineWidth',4,'Color','k")

% %fixed frame

% line([0 0.1],[0 0],[0 0],'Color','r",'LineWidth',2)

% line([0 0],[0 -0.05],[0 0],'Color','g','LineWidth',2)

% line([0 0],[0 0],[0 .1],'Color','b','LineWidth',2)

%component x

line([0 a],[0 0],[0 0],'Color','k','LineWidth',1,'LineStyle',-.")
%component y

line([a a],[0 b],[0 O],'Color','k','LineWidth',1,'LineStyle’,"-."
%component z

line([a a],[b b],[0 -c],'Color','k','LineWidth',1,'LineStyle',"-.")

%

% quiver3(a,-b,c,a_ R _h(1,1),-a_R _h(2,1),a R _h(3,1),0.1,'Color",'r")
% quiver3(a,-b,c,a_R_h(1,2),-a_R_h(2,2),a_R_h(3,2),0.1,'Color','g")
% quiver3(a,-b,c,a_R_h(1,3),-a_R_h(2,3),a_R_h(3,3),0.1,'Color','b")
view([30 45])

set(gcf,'Color',[1,1,1])

hold off

%Force components viewed from {A} (last iteration)

% Non-follower equivalent force

a_F =[a_F(size(a_F,1),)]1;

%Non-follower angles

alpha = roundn(rad2deg(acos(a_F(1,3)/F_mag)),-3)

beta = roundn(rad2deg(atan2(a_F(1,2),a_F(1,1))),-3);

beta = (beta < 0).*(360*ones(size(beta,1),1)+beta)+(beta > 0).*beta
Follower_F = [F_mag*sin(eta)*cos(xi), F_mag*sin(eta)*sin(xi), F_mag*cos(eta)];
Non_Follower_F = [F_mag*sind(alpha)*cosd(beta); F_mag*sind(alpha)*sind(beta);
F_mag*cosd(alpha)]’;

% Cap_phi angle rotation about the x-axis in the {A} frame
Cap_phi = atan2(c,b);
Cap_phi_d=rad2deg(Cap_phi)
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Gamma = ((b/L)"2+(c/L) 2+(1-a/L)"2)/(2*(1-a/L))
Cap_theta = atan2((b/(L*cos(Cap_phi))),((a/L-1)+Gamma));
Cap_theta_d=rad2deg(Cap_theta)
% Additional rotations
%Rotation from {A} to {D}
A2f=[100
0 cos(Cap_phi) -sin(Cap_phi)
0 sin(Cap_phi) cos(Cap_phi)];
B2f=[cos(Cap_theta) -sin(Cap_theta) 0
sin(Cap_theta) cos(Cap_theta) 0
001];
% From {D} to {H} we have three rotations:Rx(Cap_Sigma)Rz(Cap_Omega)Rx(Cap_phi)
Rxzx = B2fA(-1)*A2f~(-1)*Cb*Bb*Ab;
% Cap_omega = roundn(atan2(sqrt(Rxzx(2,1)"2+Rxzx(3,1)"2),Rxzx(1,1)),-3);
% Cap_omega_d=rad2deg(Cap_omega);
% Cap_sigma = roundn(atan2(Rxzx(3,1)/sin(Cap_omega),Rxzx(2,1)/sin(Cap_omega)),-3);
% Cap_sigma_d=rad2deg(Cap_sigma);
% Cap_psi = roundn(atan2(Rxzx(1,3)/sin(Cap_omega),-Rxzx(1,2)/sin(Cap_omega)),-3);
% Cap_psi_d=rad2deg(Cap_psi);
Cap_sigma =0;
Cap_sigma_d=0;
Cap_omega = atan2(Rxzx(2,1),Rxzx(1,1));
Cap_omega_d=rad2deg(Cap_omega);
Cap_psi = atan2(Rxzx(3,2),Rxzx(3,3));
Cap_psi_d=rad2deg(Cap_psi);
angles2=[Cap_phi_d,Cap_theta_d+Cap_omega_d,Cap_psi_d];
C_thetal =-theta(1+num_iter,1)/Cap_theta;
C_phil =-phi(1+num_iter,1)/(Cap_phi);
C_psil =-psi(1+num_iter,1)/(Cap_psi);
%Force components viewed from {D}
d_F = [B2fA(-1)*A2f~(-1)*a_F1'
%%%% %% %%% % %% %% %% % %% %% % %% %% %% %% %% % %% %% % %% %% % %% %% % % %%
%%%% %% %% %% %% %% %% % %% %% % %% %%
Cap_Upsilon=(Gamma*L"2*d_F(1,3)*sin(Cap_theta)*(1-Gamma))/(Ixx*G);
Cap_Upsilon_d=radtodeg(Cap_Upsilon)
Cap_Gamma=(Cap_phi-Cap_Upsilon);
Cap_Gamma_d=radtodeg(Cap_Gamma)
% K_theta_y=(L"2*d_F(1,3)*sin(Cap_theta))/(E*Cap_theta™2*(Ir*sin(2*Cap_Gamma)))
K _theta=(L"2*d_F(1,2))/(E*Cap_theta*(lbar-Ir*cos(2*Cap_Gamma)))
¢_Mx0= Ixx*G/((1-Gamma)*L)*Cap_Upsilon;
¢_My0=-c_Mx0*cot(Cap_theta);
¢_Mz0= Gamma*K_theta*E/L*(Ibar-Ir*cos(2*Cap_Gamma))*Cap_theta;
% Moment rotation from frame A to Frame C
C2f1=[100
0 cos(Cap_phi) -sin(Cap_phi)
0 sin(Cap_phi) cos(Cap_phi)];
a_M_PRBM_dim = roundn([C2f1*[c_MxO0;c_My0;c_Mz0]]'+cross([(1-Gamma)*L;0;0],a_F"',-6);
mag_a M_PRBM_dim =norm(a_M_PRBM_dim);
%Moment calculations of the flexible bar
Mx = G*Ixx*k1(num_iter+1,1);
My = E*lyy*k2(num_iter+1,1);
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Mz = E*1zz*k3(num_iter+1,1);
a_M = roundn([Mx,My,MZz],-6);
mag_a_M = sgrt(Mx"2+My"2+Mz"2);
c_M_forces = [Gamma*L*d_F(1,3)*sin(Cap_theta),-
Gamma*L*d_F(1,3)*cos(Cap_theta),Gamma*L*d_F(1,2)];
% Moment rotation from frame A to Frame C
C2f1=[100

0 cos(Cap_phi) -sin(Cap_phi)
a_M_PRBM_dim2 = roundn([C2f1*c_M_forces’]'+cross([(1-Gamma)*L;0;0],a_F")',-6);
mag_a_M_PRBM _dim2 =norm(a_M_PRBM _dim2);
rel_def_error = sgrt(((a/L)-(1-Gamma*(1-cos(Cap_theta))))2+((b/L)-
(Gamma*sin(Cap_theta)*cos(Cap_phi)))*2+((c/L)-(Gamma*sin(Cap_theta)*sin(Cap_phi)))*2)/sqrt((1-
a/L)"2+(b/L)"2+(c/L)2);
rel_M_error = sqrt((Mx)-(a_M_PRBM_dim(1,1)))"2+((My)-(a_M_PRBM_dim(1,2)))*2+((Mz)-
(a_M_PRBM_dim(1,3)))*2)/mag_a_M,;
% figure(3)
% hold on
% plot3(eta,xi,rel_M_error,'pk’)
% hold off
% view(3)
%
% figure(4)
% hold on
% plot3(eta,xi,rel_def_error,'pk’)
% hold off
% view(3)
X_v =[1;0;0]; %Define unit vectors in vehicle frame
y_v =[0;1;0];
z v=1[0;0;1];
Rx_Cap_phi=[1,0,0;0,cosd(Cap_phi_d),-sind(Cap_phi_d);0,sind(Cap_phi_d),cosd(Cap_phi_d)];
Rz_Cap_theta=[cosd(Cap_theta_d),-sind(Cap_theta_d),0;sind(Cap_theta_d),cosd(Cap_theta_d),0;0,0,1];
Rx_Cap_sigma=[1,0,0;0,cosd(Cap_sigma_d),-
sind(Cap_sigma_d);0,sind(Cap_sigma_d),cosd(Cap_sigma_d)];
Rz_Cap_omega=[cosd(Cap_omega_d),-
sind(Cap_omega_d),0;sind(Cap_omega_d),cosd(Cap_omega_d),0;0,0,1];
Rx_Cap_psi=[1,0,0;0,cosd(Cap_psi_d),-sind(Cap_psi_d);0,sind(Cap_psi_d),cosd(Cap_psi_d)];
Rxzxzx_PRBM=Rx_Cap_phi*Rz_Cap_theta*Rx_Cap_sigma*Rz_Cap_omega*Rx_Cap_psi;
X_PRBM = Rxzxzx_PRBM*x_v;
y_PRBM = Rxzxzx_PRBM*y v;
z PRBM = Rxzxzx_PRBM*z_v;

Rx_phi=[1,0,0;0,cos(-phi(last,1)),-sin(-phi(last,1));0,sin(-phi(last,1)),cos(-phi(last,1))];
Rz_theta=[cos(-theta(last,1)),-sin(-theta(last,1)),0;sin(-theta(last,1)),cos(-theta(last,1)),0;0,0,1];
Rx_psi=[1,0,0;0,cos(-psi(last,1)),-sin(-psi(last,1));0,sin(-psi(last,1)),cos(-psi(last,1))];
Rxzx_euler=Rx_phi*Rz_theta*Rx_psi;

X_euler = Rxzx_euler*x_v;
y_euler = Rxzx_euler*y_v;
z_euler = Rxzx_euler*z_v;

x_error=norm(cross(x_PRBM,x_euler));
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y_error=norm(cross(y_PRBM,y_euler));
z_error=norm(cross(z_PRBM,z_euler));
roundn([Cap_psi_d,Cap_theta_d,Cap_phi_d],-6)
roundn([Cap_omega_d,Cap_Upsilon_d,Cap_Gamma_d],-6)
roundn(phi(last,1),-6)/roundn(psi(last,1),-6)

% figure(5)

% hold on

% plot3(eta,xi,x_error,'pk’,eta,xi,y_error,'sb',eta,xi,z_error,'or")
% hold off

% view(3)

end
end
end
end

function dkds = beam_3D_units(s,K)
% Applied force at the beam end viewed from the origin before the beam starts the defection
F_O_init = [F_mag*sin(eta)*cos(xi); F_mag*sin(eta)*sin(xi); F_mag*cos(eta)];
C=[100
0 cos(k(4)) sin(k(4))
0 -sin(k(4)) cos(k(4)];
B=[cos(k(5)) sin(k(5)) 0
-sin(k(5)) cos(k(5)) 0
001];
A=[100
0 cos(k(6)) sin(k(6))
0 -sin(k(6)) cos(k(6))];
G = E/(2*(1+V));
% Follower Force at beam end viewed from the origin. Shows how it changes direction as it deflects the
beam.
F_O =C*B*A*F_O_init;
Fy_prime = F_O(2);
Fz_prime = F_O(3);
dkds = zeros(size(k));
d_phi = k(1)+(k(2)*cos(k(4))*cos(k(5))-k(3)*sin(k(4))*cos(k(5)))/sin(k(5));
d_theta = k(2)*sin(k(4))+k(3)*cos(k(4));
d_psi = (-k(2)*cos(k(4))+k(3)*sin(k(4)))/sin(k(5));
d k1 = 1/(G*Ixx)*((lyy-1zz)*E*k(2)*k(3));
d_k2 = 1/(E*lyy)*((E*1zz-G*Ixx)*k(1)*k(3)+Fz_prime);
d_k3 = 1/(E*1zz)*((G*Ixx-E*lyy)*k(1)*k(2)-Fy_prime);
d_X = cos(k(5));
d_Y = cos(k(6))*sin(k(5));
d_Z = sin(k(6))*sin(k(5));
dkds = [d_k1 d_k2 d_k3 d_phid_thetad_psid_Xd_Yd Z];
end
end
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This is the ANSYS code for the spatial beam verification.

/COM,ANSYS RELEASE 13.0 UP20101012 16:24:46 01/06/2014
/REPLOT,RESIZE

/TITLE,beam nonlinear

/INOPR

KEYW,PR_SET,1
KEYW,PR_STRUC,1
KEYW,PR_THERM,0
KEYW,PR_FLUID,0
KEYW,PR_ELMAG,0
KEYW,MAGNOD,0
KEYW,MAGEDG,0
KEYW,MAGHFE,0
KEYW,MAGELC,0
KEYW,PR_MULTI,0
KEYW,PR_CFD,0

/GO

/ICOM,

/COM,Preferences for GUI filtering have been set to display:
/COM, Structural

/PREP7

ET,1,BEAM188

MPTEMP,,,,,,,,

MPTEMP,1,0
MPDATA,EX,1,,200e9
MPDATA,PRXY,1,,0.3
SECTYPE, 1, BEAM, RECT,,0

SECOFFSET, CENT
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SECDATA,0.01,0.02,0,0,0,0,0,0,0,0,0,0
K, o

Kz21,,

LSTR, 1, 2
LESIZE,ALL0.02,,,.1,, .1,
LMESH, 1

FINISH

/SOL

ANTYPE,0

NLGEOM,1
FLST,2,1,3,0RDE,1
FITEM,2,1

/GO

DK,pP51X,,, 0,ALL,,,,,,
FLST,2,1,3,0RDE,1
FITEM,2,2

/GO

FK,P51X,FX,-268.97
FLST,2,1,3,0RDE,1
FITEM,2,2

/GO

FK,P51X,FY,561.08
FLST,2,1,3,0RDE,1
FITEM,2,2

/GO

FK,P51X,FZ,-418.74
ISTATUS,SOLU

SOLVE
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